
Agilent E2925B Opt. 320 C-API/PPR

Programmer’s Guide

S1

Important Notice
This document contains propriety information that is
protected by copyright. All rights are reserved. Neither the
documentation nor software may be copied, photocopied,
reproduced, translated, or reduced to any electronic
medium or machine-readable form, in whole or in part,
without the prior written consent of Agilent Technologies.

© Copyright 2000 by:
Agilent Technologies
Herrenberger Straße 130
D-71034 Böblingen
Germany

The information in this manual is subject to change
without notice. Agilent Technologies makes no warranty
of any kind with regard to this manual, including but not
limited to the implied warranties of merchantability and
fitness for a particular purpose.

Agilent Technologies shall not be liable for errors
contained herein or direct, indirect, special, incidental, or
consequential damages in connection with the furnishing,
performance, or use of this manual.

Brand or product names are trademarks or registered
trademarks of their respective companies or
organizations.

Author: Anja Schauer, t3 medien GmbH
2 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Index
Index

About This Guide 7

Documentation Overview 9

Programming Overview 11

Programming Interfaces 12

C Programming Libraries 13

Generic C-API Functionality 14

Protocol Permutation and Randomizer Functionality 15

Contributions of the PCI PPR Software 17

Benefits 18

Error Checking 20

Example: Using the C-API 22

Example: Using the PPR 23

Programming the Framework 27

Connection and Initialization 28

Functions Overview 29

Examples 30

Administration 33

Functions Overview 35

Examples 36

Power-Up and Reset Control 37

Functions Overview 39

Examples 40

Card Status Register Access 42

Functions Overview 42

Example 43
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 3

Index
Programming the Analyzer 45

Protocol Observer Programming 47

Functions Overview 48

Example 48

Timing Check Programming 49

Functions Overview 50

Example 51

Programming the Pattern Terms 52

Functions Overview 53

Example 54

Sequencer Programming 55

Functions Overview 58

Example 60

Performance Measurement Programming 64

Functions Overview 65

Example 67

Trace Memory Programming 70

Functions Overview 72

Example 73

Programming the Exerciser 75

Reading from and Writing to the Memories 77

Exerciser Block Diagram 78

Programming the Exerciser as a Master Device 80

Programming Generic Master Properties 82

Master Block Transfer Memory Programming 85

Master Attribute Memory Programming 89

Master Attribute Group Programming 95

Byte Enable Memory Programming 101

Master Run 103

Programming the Exerciser as a Target Device 105

Target Operation 105

Programming Generic Target Properties 107

Programming the Target Decoder Properties Memory 109

Target Attribute Memory Programming 123

Target Attribute Groups Programming 129
4 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Index
Target Run 135

Configuration Space Header Programming 136

Expansion ROM Programming 141

Data Memory and Compare Unit Programming 142

Functions Overview 142

Example 143

Host Access Programming 144

Functions Overview 144

Example 145

Interrupt Programming 146

Example 146

Built-In Test Programming 147

Functions Overview 148

Example 149

Programming the Interfaces 151

CPU Port Programming 152

Functions Overview 157

Example 159

Static I/O Port Programming 160

Functions Overview 162

Example 162

Trigger I/O Sequencer Programming 163

Functions Overview 164

Example 165

LED Controlling and Display Functions Overview 169

Example 169

Mailbox Programming 171

Functions Overview 173

Example 174

Power Management Event Programming 175
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 5

Index
Using the PPR 177

Generating Permutations 178

How to Write a Test Program 182

Example Test Design 183

PPR Administration 186

Functions Overview 187

Example 188

Programming Master Block Permutations 189

Functions Overview 195

Example 196

Programming Master Attribute Permutations 199

Functions Overview 201

Example 203

Programming Target Attribute Permutations 205

Functions Overview 207

Example 208

Generating PPR Reports 209

Functions Overview 210

Example 210

Running the PPR Test 211

Example 212

Analyzing the Report 213

Report Header 213

Report of Block Permutations 214

Report of Master Attribute Permutation 221

Report of Master Block vs. Master Attribute Permutation 226

Report of Report Properties 227

Block Page Contents 228

Further Options and Possibilities 229

Report Listing 232
6 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

About This Guide

Programming Interface The Agilent E2925B testcard is used for testing PCI chips, cards and
systems. For this purpose, the testcard allows you to develop test
programs by using:

• C-Application Programming Interface (C-API)

The C-API allows you programmable control for the whole system and
allows you the integration into existing test environments.

• Additional functions performed by the PCI Permutator and
Randomizer software (PPR)

These functions allow you to prepare and perform systematic
functional tests at the protocol level, especially exposing PCI devices
of a computer system to variable stressful PCI traffic.

Programmer’s Guide Structure For developing C programs or for using the command line interface of
the graphical user interface, this Programmer’s Guide gives you good
background knowledge of the programming models for the
Agilent E2925B testcard.

The programmer’s guide contains the following chapters:

• “Programming Overview” on page 11 gives basic information about
writing C programs, such as where to find the required libraries,
compilation and error checking.

It also provides two examples, one for using the C-API and one for
using additional PPR functions.

• “Programming the Framework” on page 27 provides information
about the first steps to be performed in any C program, such as the
testcard’s connection to a control PC and its initialization.

• “Programming the Analyzer” on page 45 provides information about
programming models for all tasks of PCI analysis to monitor the PCI
bus, to detect specific events, to measure and to evaluate the
occurrences of signals on the bus.

• “Programming the Exerciser” on page 75 provides information about
the programming models for programming the testcard as a master
and as a target device and for resources shared by both, such as data
memory and compare unit.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 7

About This Guide
• “Programming the Interfaces” on page 151 provides information
about the programming models for the available application
interfaces, such as CPU port, static I/O port, trigger I/O sequencer,
LED display and mailbox.

• “Using the PPR” on page 177 provides an overview of the features of
the software, and shows how a test program is designed and
implemented.
8 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Documentation Overview

This section shows you the different types of documents offered by
Agilent Technologies and gives you an overview of which documents are
available when you work with the Agilent E2925B PCI Exerciser and
Analyzer.

The following documents are available:

User’s Guides • Agilent E2925B Opt. 300 PCI Exerciser User’s Guide

Provides information on programming the testcard as an master
and/or target device. It shows you how to actively stimulate the PCI
bus.

• Agilent E2925B PCI Analyzer User’s Guide

Provides information on how to examine the behavior of a PCI device
on the bus and shows how to perform functional tests such as data
compares.

• Agilent E2925B Opt. 200 PCI Performance Optimizer User’s

Guide

Provides information on how to evaluate and optimize any device
under test in terms of the performance. It shows how performance
measures as efficiency, data throughput, or bus utilization, allow you
to compare and communicate the test results.

• Agilent E2925B Opt. 320 C-API/PPR Programmer’s Guide

Provides information on how to set up test programs using the
C functions described in the corresponding C-API/PPR Reference.

GUI and C-API/PPR References • Agilent E2925B Windows and Dialog Boxes Reference

Provides reference information on all windows and dialog boxes of
the Agilent E2920 graphical user interface (GUI).

• Agilent E2925B Opt. 320 C-API/PPR Reference

Describes all C functions, types and definitions of the application
programming interface and the PPR software of the Agilent E2925B
PCI testcard.

This reference also provides the commands and abbreviations that are
used in the command line interface (CLI) of the GUI.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 9

Documentation Overview
10 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming Overview

The following sections give basic information about the C-API and the
PPR software:

• The ways in programming the testcard are shown in “Programming

Interfaces” on page 12.

• Where to find the libraries, what you must do when writing C
programs and how to compile the programs depending on the
operating system, can be found in “C Programming Libraries” on

page 13.

• The features of the C-API and the PPR software can be found in
“Generic C-API Functionality” on page 14 and “Protocol

Permutation and Randomizer Functionality” on page 15.

• Error handling macros, which are needed to return error codes of
C functions, are explained in “Error Checking” on page 20.

• Two example C programs show you how to use the C-API and the PPR
software. See “Example: Using the C-API” on page 22 and “Example:

Using the PPR” on page 23.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 11

Programming Overview Programming Interfaces
Programming Interfaces

The testcard can be programmed in the following ways:

• By writing C programs

The testcard is shipped with an application programming interface for
the C programming language.

See “C Programming Libraries” on page 13.

• By using the command line interface (CLI)

The CLI provides an easy-to-use graphical user interface for entering
commands. Descriptions of the CLI commands can be found in
Agilent E2925B Opt. 320 C-API/PPR Reference, together with their
corresponding C function.

For more information, refer to “Using the Command Line Interface”
in the Agilent E2925B Opt. 300 PCI Exerciser User’s Guide.

Hints for programming on 64 bit
systems

If you plan to run the PCI software under 64 bit Itanium systems, you
should read the following.

Targeted are currently the 64 bit Microsoft .NET Server OSes.

To install, you need a separate installation file, named setup64.exe,
located in the CD's ia64 directory. Do not install the 32bit setup.exe.

On 64bit Itanium systems the following is true:

• Kernel mode:

Drivers always need to be 64 bit drivers; 32 bit drivers wont work.
Especially, this means that you can't use the existing 32 bit drivers.
Our 64 bit drivers are named b_2kpci_64.sys, b_2khif_64.sys,
b_usb_64.sys and b_usbgen_64.sys.

• User mode:

If you are starting an application, the .exe (and all needed dlls) need to
be either all 32 bit files or all need to be 64 bit files, i.e. you cannot mix
them. For example a 64 bit .exe cannot use a 32 bit dll.

Our 64-bit dlls always have the suffix "xp64", e.g. capixp64.dll (instead
of capikk.dll in 32 bit mode).

• The PCI GUI always only runs in 32bit mode (so they alway needs the
corresponding 32 bit dlls).

If you want to write your own C-API programs, you can use the
provided 64bit dlls though and run your program as 64 bit executable
(32 bit mode is forced only when using the GUI).
12 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

C Programming Libraries Programming Overview
C Programming Libraries

During the installation wizard on the CD-ROM the library files, user
documentation and examples to the acting control PC in your test
application are installed. You can also develop your test program on a
different PC (in the “Demo/Offline Mode” of the software) and later
upload your application to the control PC.

Directory Structure All required files are automatically installed with the control software
and can be found in the subdirectories of the Agilent PCI Series home
directory. The following figure shows the directory structure on a
Windows NT system.

The home directory is C:\Program Files\Agilent\E2920 PCI Series

<Revision>.

When developing C programs for the testcard, you need to:

• Include the referring header files into your program.

• Enter the paths to include files, library files, and/or source files into
the directory settings of your developing environment.

Examples Many ready-to-use example programs can be found in the “samples”
directory. The user documentation for hardware, software, and options
uses many of these examples to explain the functions.

Include Files

Library Files

Examples

Source Files
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 13

Programming Overview Generic C-API Functionality
Platform-Dependence All sample programs can be compiled with Microsoft  VC++ 5.0.

Communication with E2920 series PCI testcards uses the E2920 series
C-API. The C-API contains the necessary drivers for testcard
communication. PCI C-API is available in binary form for a number of
operating systems (including Windows NT), and as compilable source
code for other systems. The platform and operating system determine
which drivers are necessary for internal communication with the
testcard and for the memory.

Generic C-API Functionality

The C-API is used to program all analyzer, exerciser and performance
optimizer functionalities.

For all features of the testcard, refer to:

• Agilent E2925B Opt. 300 PCI Exerciser User’s Guide

• Agilent E2925B PCI Analyzer User’s Guide

• Agilent E2925B Opt. 200 PCI Performance Optimizer User’s Guide
14 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Protocol Permutation and Randomizer Functionality Programming Overview
Protocol Permutation and
Randomizer Functionality

The PCI Permutator and Randomizer software adds functions to the
C-API for preparing and performing systematic functional tests at the
protocol level, especially tests for exposing PCI devices of a computer
system to variable stressful PCI traffic.

Developing computer systems requires a lot of different tasks and
therefore involves a lot of people. This section outlines the process of
computer system development and some roles of those who are involved
in it. It shows the benefits of PCI Permutator and Randomizer software
for each of them.

Computer system development requires the following steps:

• Device bring-up and debug

The development process starts with the bring-up and debug phase. In
this phase the devices (add-in testcards, motherboard, and so forth) of
a computer system are developed independently by testcard or
chipset manufacturers. This phase includes electrical and PCI signal
integrity tests and finishes with a functional test phase at the PCI
protocol level.

NOTE Corner cases are exhaustive, complicated, and/or uncommon usage of
PCI protocol elements, thereby indicating system limitations.

This test phase requires a well controllable (but artificial) testing
environment. The devices are examined to see whether their protocol
level behavior is as expected. The devices are tested on corner cases,
whereby coverage of the test cases is well known. The tests are mainly
performed by developers of research and development (R&D)
departments.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 15

Programming Overview Protocol Permutation and Randomizer Functionality
• System integration

After passing these tests, system integrators assemble systems from
those testcards. The functionality of the testcards is tested in a
functional test phase.

The PCI bus is the focus of these examinations, because it connects
the motherboard to the peripheral devices within a computer system.
Functional tests expose the PCI interfaces of devices and
motherboard to PCI traffic.

The test checks whether the PCI devices of the computer system work
as expected. One device after the other is examined, until each of
them is exposed to certain functional tests. The tests consider their
PCI compatibility and again the PCI behavior in corner cases at the
protocol level.

• System quality assurance

In the last phase, the system is exposed to a system assurance test.
In this phase, it is tested whether all parts of the system cooperate.

Unlike a functional test, a system assurance test requires a realistic
testing scenario. All components must transfer traffic simultaneously.
The test result shows, whether the system crashes under this stress.

For system assurance tests, stress tests and performance analysis are
performed to find system bottlenecks.

NOTE Testing peripheral devices (such as graphic testcards, SCSI testcards,
and LAN testcards) may cause some additional effort (for adapting
device drivers or developing test software).

The PCI Permutator and Randomizer software provides functional tests
for systems and devices at the PCI protocol level and system assurance
tests.

When testing devices, mainly memory controlling mechanisms can be
tested by focusing on host bridges and PCI-to-PCI-bridges.
16 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Protocol Permutation and Randomizer Functionality Programming Overview
Contributions of the PCI PPR Software
In this section, the particular role of the PCI Permutator and Randomizer
software is explained. Therefore, it is shown how data transfer is
controlled by the Exerciser and Analyzer.

The test cases require systematically varying transfer parameters
(commands, waits, burstlengths, byte enables, alignments). These
parameters are controlled by the Exerciser and Analyzer. The
information on how to control the parameters is held in programmable
memories on the testcard:

• The master block transfer memory holds control information on
how blocks are to be transferred when the Exerciser and Analyzer is
used as master device (start address alignment, block size, byte
enables, bus command). It also holds an entry pointing to a page in the
master attribute memory, which is worked through during block
transfer.

• The master attribute memory holds control information on master
attributes on each phase of block transfer (burstlength, stepmode,
wait inserting, parity/system error).

• The target attribute memory is used when the testcard is used as
target device and holds control information on target attributes on
each phase of a block transfer (parity/system error and terminations).

The PCI Permutator and Randomizer software programs these
memories.

NOTE For more information on the memories, refer to “Programming the

Exerciser” on page 75.

Operation Principles Only the permutation constraints of attributes and block page
parameters need to be set, then the permutation and randomizing
algorithm first calculates whether all possible parameter combinations
can be covered and estimates the testing time. The results of the
calculation can be written into a textual report. If the algorithm
calculated that not all necessary combinations can be covered, it can still
be determined which combinations can be performed and which cannot.

The PCI Permutator and Randomizer software ensures that the device
under test is exposed to all defined protocol variations, thus, PCI
Permutator and Randomizer software determines the course of the test.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 17

Programming Overview Protocol Permutation and Randomizer Functionality
The calculation can be repeated with varying parameters, until the
results of the calculation of the PCI Permutator and Randomizer
software meet your testing requirements. Then the PCI Permutator and
Randomizer software can build and download the pages to the
Exerciser and Analyzer.

To run the test, the PCI Permutator and Randomizer software is not
required. This is done by the Exerciser and Analyzer’s exerciser run

functions. Errors that occur during the test (protocol errors, bus or
device hang) can later be analyzed using Exerciser and Analyzer’s
analyzer functions.

Benefits
When setting up tests, you can take advantage of the following features
of the Exerciser and Analyzer and the PCI Permutator and Randomizer
software:

• Creating controlled protocol corner cases

The software makes it possible to expose device or system under test
to corner case traffic, to add system and parity errors, to assert and
deassert signal lines and other.

Tests can be set up that add as many Exerciser and Analyzers as
required and letting them transfer data blocks repeatedly to generate
enough traffic to stress the PCI system.

• Data-integrity testing

The software makes it possible to use the Exerciser and Analyzer
memory functions to comfortably write, read and compare data
blocks.

• Emulating typical peripheral traffic

The software makes it possible to substitute test devices with
Exerciser and Analyzers. Testcards can be set up to behave like any
device. The memory is programmable with any content. There is no
need to exchange devices in the system for testing reasons to get
“realistic” traffic.

The PCI Permutator and Randomizer software intensifies the
possibilities by systematically varying transfer parameters to examine
protocol corner cases.
18 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Protocol Permutation and Randomizer Functionality Programming Overview
• Storing and analyzing bus traffic

The software makes it possible to find misbehavior on protocol and
signal level using advanced listers (waveform lister, bus activity lister,
transaction lister) of the (optional) graphical user interface of
Exerciser and Analyzer. These listers allow a detailed analysis of all
events that have occurred on the considered bus.

• Stressing from multiple PCI slots on multiple buses

The software makes it possible to use multiple testcards to generate
stress traffic from one bus system to another over PCI-to-PCI-bridges.

• Deterministic and reproducible tests

In contrast to PCI traffic generated by other test devices, the
generated variations are deterministic and reproducible. This
guarantees coverage and reproducible tests. The permutation
progress can be read out on block level or block page level. In the case
of an error or a bus hang, exactly the same behavior can be repeated
for reproduction of an error. Alternatively, the test can be continued
after that error.

• PCI protocol attribute permutations within programmable

constraints

The software makes it possible to specify the values to be varied for
each master and target attribute separately. Thus, testing time can be
reduced by focusing on cases of interest. Simple problems can soon be
found.

• Detailed report

The software provides a printable report, which shows which protocol
attributes are completely permutated against which other protocol
attributes after how many of data transfers.

• Predictable testing time

The test’s run time estimated by the PCI Protocol Permutation and
Randomizer can also be written to the report.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 19

Programming Overview Error Checking
Error Checking

Each C-API function returns an error code. The error code is 0 (B_E_OK) if
no error has occurred, otherwise it should be evaluated for error
handling. Errors can be handled either by handle-based or
non-handle-based error checking.

Handle-Based Error Checking
Handle-based error checking provides better error messages than non-
handle-based error reporting, so it should be used whenever possible.
The following macro can be simplified if your program only uses a single
handle.

Note that these macro definitions rely on the use of a global variable
definition b_errtype err.

Used Macro Use a macro similar to this for handle-based error checking:

#define C1(handle, x) if ((err = x) != B_E_OK)\
{
printf ("%s (line %d)\n", \
BestLastErrorStringGet(handle), __LINE__);\
return -1;

}

This macro can be called in either one of the following ways:

• C1(handle_1,BestMasterGenPropDefaultSet(handle));

• err=BestMasterGenPropDefaultSet(handle); C1(handle_1, err);

Simplified Version of Handle-Based
Error Checking

In case you are using a single handle identified by the name handle, use
the following macro:

#define C1(x) if ((err = x) != B_E_OK) \
{
printf (”%s (line %d)\n”, \´
BestLastErrorStringGet(handle), __LINE__);\
return -1;

}

This macro can be called in either one of the following ways:

• C1(BestMasterGenPropDefaultSet(handle));

• err=BestMasterGenPropDefaultSet(handle); C1(err);
20 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Error Checking Programming Overview
Non-Handle-Based Error Checking
The following functions do not provide handles, therefore they cannot be
used with handle-based error checking methods:

• BestDevIdentifierGet()

• BestPCICfgMailboxReceiveRegRead()

• BestPCICfgMailboxSendRegWrite()

Handle Initialization The following function initializes the handle. The handle is valid only if
this function returns the handle successfully:

• BestOpen()

Used Macro Use all the functions with a macro similar to this:

#define C(x) if ((err = x) != B_E_OK) \
{
printf (”%s (line %d)\n”, \
BestErrorStringGet(handle), __LINE__);\
return -1;

}

This macro can be called in either one of the following ways:

• C(BestDevIdentifierGet(ven, dev, no, &devid));

• err=BestDevIdentifierGet(ven, dev, no, &devid); C(err);

For error codes, refer to “b_errtype” in the C-API/PPR Programming

Reference.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 21

Programming Overview Example: Using the C-API
Example: Using the C-API

NOTE The following example can be used as framework for all further code
fragments using the C-API in this document.

#include <stdio.h>
#include <mini_api.h>

define CH(x) if ((err = x)) != B_E_OK\
{printf ("%s (line %d)\n", \
BestLastErrorStringGet(handle), __LINE__);\
return -1; }

#define C(x) if ((err = x)) != B_E_OK\
{printf ("%s (line %d)\n", \
BestErrorStringGet(handle), __LINE__);\
return -1;

int main ()

{
b_errtype err;
b_charptrtype version_string;
b_handletype handle;

/* Open the communication session to testcard, initialize */
/* internal structures. */
err = BestOpen(&handle,B_PORT_RS232,B_PORT_COM1); C(err);

/* If using RS232, set baud rate: */
err = BestRS232BaudRateSet(handle,B_BD_57600); CH(err);

/* For example:*/
/* Read product & serial number from testcard. */
err = BestVersionGet (handle, B_VER_PRODUCT, &version_string);
CH(err);
printf("Product: %s\n", version_string); err = BestVersionGet
(handle, B_VER_SERIAL, &version_string); CH(err);
printf("Serial#: %s\n", version_string);

/* Close the session to deallocate memory. */
err = BestClose(handle); CH(err);

}

22 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Example: Using the PPR Programming Overview
Example: Using the PPR

NOTE The following example can be used as framework for all further code
fragments using the PPR in this document.

WA RNING This program fragment writes data to system memory. To run this
program in a real environment, a line that allocates the required memory
must be added.

#include <stdio.h>
#include <mini_api.h>
#include <ppr.h>

#define CHECK { if (status != B_E_OK) \
{printf ("ERROR line %d, %s\n", __LINE__,
BestErrorStringGet(status)); return -1;}\

}

#define WARN { if (status != B_E_OK) \
{printf ("WARNING
line %d, %s\n", __LINE__, BestErrorStringGet(err));} \
}

int main (void)
{
b_errtype status;
b_handletype handle;
b_int32 status_reg;
b_int32 errbit;
b_int32 count;
b_charptrtype errtext;
b_int32 blockruns;

/* Open the communication session to testcard on Fasthost
interface.*/

status = BestOpen(&handle, B_PORT_PARALLEL,
B_PORT_LPT1); CHECK;

/* Set attribute mode to sequential. */
status=BestMasterGenPropSet(handle,

B_MGEN_ATTRMODE,
B_ATTRMODE_SEQUENTIAL); CHECK;

/* Initialize PPR. */
status=BestPprInit (handle); CHECK;
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 23

Programming Overview Example: Using the PPR
/* Set up generic PPR properties. */
status=BestPprGenPropSet(handle, BPPR_GEN_BUSWIDTH, 32);

CHECK;

/* Block permutation.
* Data is transfered from testcard internal address 0
* to busaddress 0xb8000 (video memory). */

printf ("programming Block permutation\n");

status=BestPprBlockPermPropSet(handle,
BPPR_BLK_DIR,
BPPR_DIR_WRITE); CHECK;

status=BestPprBlockPermPropSet(handle,
BPPR_BLK_BUSADDR,
0x0b8000); CHECK;

status=BestPprBlockPermPropSet(handle, BPPR_BLK_INTADDR, 0);
CHECK;
status=BestPprBlockPermPropSet(handle, BPPR_BLK_NOFDWORDS, 64);

CHECK;
status=BestPprBlockPermPropSet(handle, BPPR_BLK_ATTRPAGE, 2);

CHECK;
status=BestPprBlockPermPropSet(handle, BPPR_BLK_PAGENUM, 1);

CHECK;
status=BestPprBlockPermPropSet(handle, BPPR_BLK_PAGESIZEMAX, 60);

CHECK;
status=BestPprBlockPermPropSet(handle, BPPR_BLK_CACHELINE, 4);

CHECK;

/* Block variation properties. */
status=BestPprBlockVariationSet(handle,

BPPR_BLK_ALIGN,
"(%16=0), (%16=4), (%16=8), (%16=12), (%32=0)",
BPPR_ALG_PERM); CHECK;

status=BestPprBlockVariationSet(handle,
BPPR_BLK_SIZE,
"4,8,16",
BPPR_ALG_PERM); CHECK;

status=BestPprBlockVariationSet(handle,
BPPR_BLK_CMDS,
"mem_write, mem_writeinvalidate",
BPPR_ALG_PERM); CHECK;

status=BestPprBlockGenerate(handle); CHECK;
24 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Example: Using the PPR Programming Overview
/* Master attribute permutations. */
printf ("Programming master attr. permutation\n");
status=BestPprMAttrPermPropSet(handle,

BPPR_MA_PAGENUM, 2); CHECK;

status=BestPprMAttrPermPropSet(handle,
BPPR_MA_PAGESIZEMAX, 49); CHECK;

status=BestPprMAttrVariationSet(handle,
B_M_LAST,
"4, 8, 32",
BPPR_ALG_PERM); CHECK;

status=BestPprMAttrVariationSet(handle,
B_M_WAITS,
"0, 1, 3, 8",
BPPR_ALG_PERM); CHECK;

status=BestPprMAttrVariationSet(handle,
B_M_STEPS,
"0, 7",
BPPR_ALG_PERM); CHECK;

status=BestPprMAttrVariationSet(handle,
B_M_TRYBACK,
"true, false",
BPPR_ALG_PERM); CHECK;

/* Generate master attributes page. */
status=BestPprMAttrGenerate(handle); CHECK;

/* Print a report w/o target attributes. */
status=BestPprReportPropSet (handle, BPPR_REP_TA, 0); CHECK;
status=BestPprReportPropSet (handle, BPPR_REP_TACONTENT, 0);
CHECK;
status=BestPprReportFile(handle, "report.txt"); CHECK;
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 25

Programming Overview Example: Using the PPR
/* Obtain number of blockruns necessary for complete coverage. */
status=BestPprMAttrResultGet(handle,

BPPR_MA_RUNS,
&blockruns);

printf ("Running master %u times\n", blockruns);
for (count=0; count<blockruns; count++)
{
status=BestMasterBlockPageRun(handle, 1); CHECK;

do
{
status=BestStatusRegGet(handle, &status_reg); CHECK;
}
while ((status_reg & 0x01));
if (status_reg & 0x80)
{
printf ("Test failed, master abort has occured!\n");
break;
}

}

/* Get protocol errors. */
if (status_reg & 0x10)
/* protocol error occured */
{
status=BestObsStatusGet (handle, B_OBS_ACCUERR, &status_reg);

CHECK;

printf("The following protocol errors habe been detected:\n");
for (errbit=1;
errbit<=0x010000000; errbit >>=1)
{
if (status_reg & errbit)
{
status=BestObsErrStringGet (handle, errbit, &errtext); CHECK;
printf ("%s\n", errtext);
}
}
}

/* Close the session, deallocate memory. */
status=BestPprDelete(handle); CHECK;
status=BestClose(handle); CHECK;

}

26 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Framework

The following sections provide information about the testcard’s
connection to a control PC and its initialization. These are the first steps
to be performed in any C program for the testcard.

• “Connection and Initialization” on page 28 shows you to set up and
specify the control interface(s) and how to establish the connection.

• “Administration” on page 33 gives information about performing
several checks, such as checks for enabled capabilities of the testcard,
for current versions of testcard’s components or for system
information.

Here you get also information about resource locking.

• “Power-Up and Reset Control” on page 37 shows how to control the
testcard’s power-up and reset behavior.

This information is useful for tests focusing on the power-up behavior
of your system under test. It can also help when the testcard hangs
and you need to unlock it.

• “Card Status Register Access” on page 42 gives information about
using the testcard’s status register.

This information is useful for evaluating test results or for debugging
and evaluating errors.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 27

Programming the Framework Connection and Initialization
Connection and Initialization

When executing a C program for the testcard, the testcard and the
connections must be initialized. The testcard can be controlled via PCI
port, RS-232 serial interface or Fast Host Interface. Some typical
initialization routines for each type of control connection are shown in
“Examples” on page 30.

PCI Port The testcard communicates via the PCI bus through its configuration
space.

No system resources are required to program the testcard. This is
especially useful when the testcard is used as a passive observer
(protocol checker or performance monitor) and is not authorized to
change the system configuration of the system under test (for example,
memory mapping).

RS-232 Serial Interface The RS-232 serial interface provides an easy-to-use control interface,
which is available on all PCs and notebook computers. It can be run at
2400, 4800, 9600, 19200, 38400, and 57600 baud (8 bit data, 1 stop bit, no
parity).

Fast Host Interface Port The Fast Host Interface port provides an easy-to-install connection to a
standard PC with higher throughput than an RS-232 interface in both
read and write directions.

The control PC must be equipped with the Fast Host Interface card
coming with the PCI Analyzer and connected to the parallel port on the
testcard.

Specification Maximum transfer rate: 4 MB/s (using the Fast Host Interface).
28 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Connection and Initialization Programming the Framework
Functions Overview
The following figure shows the available functions used for connecting
and initializing the testcard. This figure also shows the integration of
these functions into the test program.

Programming Steps Initializing the Exerciser and Analyzer testcard requires the following
steps:

1 If the PCI Bus is used as the controlling interface port, use
BestDevIdentifierGet to get the device number of the testcard.

This device number is used in BestOpen for device identification.

2 Initialize internal structures and variables for the control port and
establish the connection. Use BestOpen.

3 If the RS-232 serial interface is used, set the baud rate with
BestRS232BaudRateSet.

4 Insert your application code.

Parts of your program may communicate with different resources via
different ports on the testcard. Therefore, resources must be locked
while they are used and unlocked after they have been used. Use
BestResourceLock and BestResourceUnlock.

5 Close the connection and deallocate the session memory with
BestClose.

PCI-Port RS-232 Fast Host Interface

BestDevIdentifierGet(
vendor id, device id, index, &devid)

BestOpen(interface, port)

BestRS232BaudRateSet(baud rate)

/ * ApplicationProgram*/
…

BestClose()
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 29

Programming the Framework Connection and Initialization
Examples
The following examples show the programming steps required to
initialize the testcard, and to set up a control connection to it. An
example is given for each type of control connection:

• serial

• parallel

• PCI port

Note that for clearness and convenience the errors are handled assuming
that only one connection has been opened and the session handle is
named “handle”. This also enables compatibility with previous program
versions.

Serial Port Example

Task In this example, a connection to the testcard is opened using the serial
port and the baud rate is set to 57600 bps.

Implementation #include <stdio.h>
#include <mini_api.h>

int main ()
{
b_errtype err;
b_handletype handle;

/*Initialize port internal structs and variables*/
err=BestOpen(&handle,B_PORT_RS232,B_PORT_COM1); C(err);

/*Set baud rate to 57600*/
err=BestRS232BaudRateSet(handle,B_BD_57600); C(err);

/* Start of application program code, for example, locking the
exerciser */
err=BestResourceLock (handle,B_RESLOCK_EXERCISER); C(err);

/* This line represents the application program for the exerciser
*/

/* After exerciser application program’s end, unlock the exerciser
*/
err=BestResourceUnlock(handle, B_RESLOCK_EXERCISER); C(err);

/* close the session and deallocate memory*/

err=BestClose(handle); C(err);

}

30 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Connection and Initialization Programming the Framework
Fast Host Interface Example

Task The following example shows how to open a connection to the testcard
using the Fast Host Interface.

Implementation #include <stdio.h>
#include <mini_api.h>

int main ()

{

b_errtype err;
b_handletype handle;

/*Initialize port internal structs and variables*/
err=BestOpen(&handle,B_PORT_FASTHIF,0); C(err);

/* Start of application program code, for example, locking the
exerciser */
err=BestResourceLock (handle,B_RESLOCK_EXERCISER); C(err);

/* This line represents the application program for the exerciser
*/

/* After exerciser application program’s end, unlock the exerciser
*/
err=BestResourceUnlock(handle, B_RESLOCK_EXERCISER); C(err);

/* close the session and deallocate memory*/
err=BestClose(handle); C(err);

}

Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 31

Programming the Framework Connection and Initialization
PCI Bus Example With Two Testcards and Reading Out
Capabilities

Task The following example opens a connection to two testcards using the
PCI interface. BestDevIdentifierGet is used to request the device

identifier of each testcard. This device identifier is then used to open
the connection to the respective testcard.

The third parameter of BestDevIdentifierGet is an index used for
testcard identification when multiple testcards are used.

The example also shows how to read out the testcard’s capabilities.

Implementation #include <stdio.h>
#include <mini_api.h>

int main ()
{
b_errtype err;
b_handletype handle1, handle2;
b_int32 devid;
b_int32 capability_code;

/*Get device number devid of first testcard
The index (number=0) can be used to distinguish between
multiple testcards*/
err=BestDevIdentifierGet(0x103C, 0x2926, 0, &devid); C(err);

/*Initialize port internal structs and variables*/
err=BestOpen(&handle1, B_PORT_PCI_CONF, devid); C(err);

/*Repeat for the second testcard (number=1)*/
err=BestDevIdentifierGet(0x103C, 0x2926, 1, &devid); C(err);
err=BestOpen(&handle2, B_PORT_PCI_CONF, devid); C(err);

/* Application program code, check here for capabilities */
err=BestCapabilityRead(handle1, &capability_code); C(err);
if
(capability_code & (B_CAPABILITY_EXERCISER | B_CAPABILITY_ANALYZER))

{
printf("testcard1:”);
printf("exerciser capability enabled or ”);
printf("analyzer capability enabled (or both) !\n");
}

else
{
printf("testcard1: Neither exerciser nor analyzer capability
enabled !\n");
}

32 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Administration Programming the Framework
err=BestCapabilityRead(handle2, &capability_code); C(err);

if
(capability_code & (B_CAPABILITY_EXERCISER | B_CAPABILITY_ANALYZER)

{
printf("testcard2:”);
printf("exerciser capability enabled or ”);
printf("analyzer capability enabled (or both) !\n");
}

else
{
printf("testcard2: Neither exerciser nor analyzer capability
enabled !\n");
}

/* close the session and deallocate memory*/
BestClose(handle1); C(err);
BestClose(handle2); C(err);

}

Administration

You can prepare the following during the initialization phase of your
C program.

Version Checking Before your program starts actions on the testcard, you can let it check
for versions of the testcard’s components.

To ensure compatibility of hardware, firmware and C-API software, you
can check for the versions of the following components of the testcard.

• Card’s product number

• Hardware serial number

• Card version

• Core BIOS

• Firmware version and date

• XILINX FPGA (Field Programmable Gate Array) chain architecture

• C-API version
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 33

Programming the Framework Administration
Resource Locking The C program can access different resources on the testcard via
different interfaces. To guarantee proper operation, you can lock
different resources to different interfaces. This prevents the resources
from being simultaneously accessed via different ports.

Capability Checking In offline mode, the C program can run without an testcard and/or
without the required product capabilities. This may be useful, for
example, for testing or demo purposes. You can check for available
product capabilities in your program’s initialization phase.

The C-API allows you to check whether or not the following capabilities
are available:

• All capabilities

• No capabilities

• Analyzer

• Exerciser

• Host interface (CPU port, static I/O, host access functions)

• 64-bit PCI

• 66-MHz PCI (for exerciser and analyzer)

• Trace memory sizes

• Performance measures

It is a good idea to have this information available before you call
support.

If your hardware does not have one or more of the above capabilities,
you can still develop or test in offline mode, because this mode does not
use a physical port and, therefore, does not require hardware.

System Checking The C-API also enables you to request the buswidth (32 or 64 bits) and
speed (33 or 66 MHz) of the PCI system under test.
34 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Administration Programming the Framework
Functions Overview
The following figure shows all functions available for administration
purposes regarding to the testcard and the system under test.

Programming Options The administration functions of the testcard allow the following options:

• To ensure compatibility of hardware, firmware and C-API software, or
in case of support calling, check the version of testcard’s components.

Use BestVersionGet.

• To lock different resources to different interfaces, use
BestResourceLock.

• To unlock resources or to check whether resources are locked, use
BestResourceUnlock, BestAllResourceUnlock and
BestResourceIsLocked.

• To check for a special available capability such as Analyzer or
Exerciser, use BestCapabiltityCheck.

To get information about all available capabilities, use
BestCapabilityRead.

• To get system information, such as buswidth and busspeed, use
BestSystemInfoGet.

BestResourceLock()

BestResourceIsLocked()

BestCapabilityCheck() BestResourceUnlock()

BestAllResourceUnlock()

Testcard

BestVersionGet()

BestCapabilityRead()

System Under Test

PCI Bus

Testcard
BestSystemInfoGet()
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 35

Programming the Framework Administration
Examples
Task The following code fragments give examples for administration

purposes.

Version Checking /* Read product & serial number from testcard */
err=BestVersionGet (handle, B_VER_PRODUCT, &version_string); C(err);
printf("Product: %s\n", version_string);

err=BestVersionGet (handle, B_VER_SERIAL, &version_string); C(err);
printf("Serial#: %s\n", version_string);

Resource Locking /* Locking the exerciser */
err=BestResourceLock (handle,B_RESLOCK_EXERCISER); C(err);

/* This line represents the application program for the exerciser */

/* After exerciser application program’s end, unlock the exerciser */
err=BestResourceUnlock(handle, B_RESLOCK_EXERCISER); C(err);

Capability Checking /* Application program code, check here for capabilities*/
err=BestCapabilityRead(handle1, &capability_code); C(err);
if
(capability_code & (B_CAPABILITY_EXERCISER | B_CAPABILITY_ANALYZER))

{
printf("testcard1:”);
printf("exerciser capability enabled or ”);
printf("analyzer capability enabled (or both) !\n");
}

else
{
printf("testcard1: Neither exerciser nor analyzer capability
enabled !\n");
}

err=BestCapabilityRead(handle2, &capability_code); C(err);
if
(capability_code & (B_CAPABILITY_EXERCISER | B_CAPABILITY_ANALYZER))

{
printf("testcard2:”);
printf("exerciser capability enabled or ”);
printf("analyzer capability enabled (or both) !\n");
}

else
{
printf("testcard2: Neither exerciser nor analyzer capability
enabled !\n");
}

System Checking /* Checking for the bus speed */
berr=BestSystemInfoGet(handle,B_SINFO_BUSSPEED,&BusSpeed); C(err);
36 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Power-Up and Reset Control Programming the Framework
Power-Up and Reset Control

The behavior of the testcard during power-up or reset can be controlled
by programming power-up properties. Controlling this behavior is then
needed when writing C programs that focus on the power-up behavior of
the system under test, or when the PCI bus hangs making a reset
necessary.

The following properties are available to control power-up and reset:

• Power-Up

After power-up, the testcard is completely reset. The testcard’s
configuration space header settings control the behavior of the
testcard after power-up with property B_PU_CONFRESTORE. Set this
property according to your test environment before you power down
the testcard:

– If the testcard is used in a PCI system with BIOS, then the BIOS-
programmable bits in the base address registers of the testcard
should be set to 0 for power-up—that is: these bits should not be
restored from the settings before power-up. The BIOS can
reprogram them when allocating memory resources during system
configuration.

– In a system without BIOS, you must set these bits to allocate
memory resources. They should be programmed in such a way
(using the power-up properties) that they do not need to be
reprogrammed after each power-up.

For information on the configuration space header, refer to
“Configuration Space Header” in the PCI Exerciser User’s Guide.

• PCI Reset

Normally, a PCI reset is issued by the system controller of the system
under test and has the same effect as power-up.

However, property B_BOARD_RSTMODE can be used to prevent the
testcard from being completely reset, for example, to avoid loss of
data or change of states. That means that only the internal state
machines and the target are reset and initialized; the master and trace
memory are not automatically reset because they are controlled by
their own power-up properties.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 37

Programming the Framework Power-Up and Reset Control
• Board Reset and Statemachine Reset commands

These commands issue an testcard reset from the C program:

The Board Reset command is used to establish a defined state of the
testcard before the C program actually begins. The command has the
same effect as power-up, however, it does not affect the configuration
space settings or internal state machines.

The Statemachine Reset command can be used before recovering data
from the testcard if the testcard does not react anymore because of a
hanging PCI bus.

Restoring Settings after Resets The testcard’s behavior is determined by property settings in its
memory. These settings are currently influenced internally by
programming, or externally by the test flow.

Because the testcard’s memory is volatile, the current property settings
are lost after the testcard is reset. To ensure a deterministic behavior
during power-up, power-up settings are automatically loaded from a
non-volatile, programmable memory. These settings are referred to as
user defaults and allow a programmable power-up behavior of the
testcard.

However, the user defaults could also be set in a way that causes start-up
problems with the system under test or the testcard. In this case, factory

defaults can be used instead.
38 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Power-Up and Reset Control Programming the Framework
Functions Overview
The following figure shows all functions used to program power-up and
reset behavior of the testcard and displays all memories controlled by
these functions.

Programming Options The power-up control of the Exerciser and Analyzer testcard allows the
following options:

• To program the user defaults, store the current settings as power-up
defaults with BestAllPropStore.

• To use the user defaults as current settings, load them to the memory
with BestAllPropLoad.

• To use the factory defaults as current settings, load them to the
memory with BestAllPropDefaultLoad.

• To issue a board reset and a state machine reset, use BestBoardReset
and BestSMReset.

• To determine whether a PCI reset causes a board reset or a state
machine reset, set the “board mode” with BestBoardPropSet.

State Machines

Memory
(volatile)

Current Settings

User Defaults
(non-volatile)

Programmable
Power-Up
Settings

FactoryDefaults

FixedSettings

BestAllPropStore()

BestAllPropDefaultLoad()

Master State
Machine

Configuration
Space

Analyzer
State

Machine

Target State
Machine

Decoders

BoardReset

State Machine
Reset

(BestSMReset())

Performed automatically
after board reset.

BestAllPropLoad()

Pr
op

G
et

Pr
op

Se
t

Po
w

er
U

pP
ro

pG
et

Po
w

er
U

pP
ro

pS
et
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 39

Programming the Framework Power-Up and Reset Control
Examples
The testcard’s behavior is determined by property settings in its
memory. These settings are currently influenced internally by
programming, or externally by the test flow.

The following examples shows how to define the power-up behavior of
the testcard:

• “Factory Defaults for Power-Up” on page 40

The user defaults can be set in a way that causes start-up problems
with the system under test or the testcard. In this case, factory

defaults can be used instead.

• “User Defaults for Power-Up” on page 41

Because the testcard’s memory is volatile, the current property
settings are lost after the testcard is reset. To ensure a deterministic
behavior during power-up, power-up settings are automatically loaded
from a non-volatile, programmable memory. These settings are
referred to as user defaults and allow a programmable power-up
behavior of the testcard.

Factory Defaults for Power-Up

Task The following example shows how to program the testcard to use the
factory defaults for power-up.

Implementation /* Load the factory defaults as current settings. */
err=BestAllPropDefaultLoad(handle); C(err);

/* Load the current settings (now acting as the factory defaults)
as user defaults. */
err=BestAllPropStore(handle);C(err);

/* Reset the board and uses the factory defaults as power-up
settings. */
err=BestBoardReset(handle);C(err);
40 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Power-Up and Reset Control Programming the Framework
User Defaults for Power-Up

Task Instead of using the factory defaults, you can program any user defaults
according to your specific test requirements. All functions described in
the C-API reference the names of which end with ...PropSet() write
current settings to the memory. This is shown in the following example.

Implementation int main (int argc, char *argv[])
{

b_errtype err;
b_handletype handle;

err=BestOpen(&handle,B_PORT_PARALLEL,B_PORT_LPT2); C(err);
err=BestConnect (handle); C(err);

/* Set vendor and device id:*/
err=BestConfRegSet(handle, 0x00, 0x2925103c); C(err);

/* Make Device and Vendor ID read-only.*/
err=BestConfRegMaskSet(handle, 0x00, 0x00000000); C(err);

/* Read/write bits will have their factory default values at
powerup. */

err=BestPowerUpPropSet(handle, B_PU_CONFRESTORE, 0); C(err);
err=BestAllPropStore(handle); C(err);

/* Disconnect from the current port.*/
err=BestDisconnect (handle); C(err);

/* Close the session and deallocate memory.*/
err=BestClose(handle); C(err);
return 0;

}

Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 41

Programming the Framework Card Status Register Access
Card Status Register Access

The testcard status register can be used, for example, to evaluate the test
result after the test run, and to debug and evaluate errors. The bits show:

• the exerciser status: master run, active target, data compare error, or
master block abort.

• the analyzer status: protocol error, trace memory is running
(recording), asserted interrupts.

• whether a C function returned an error (error code not equal to zero).

• whether a high level test function (see Built-In Test Functions) has
failed.

• whether another on-board application has failed.

• whether a PCI interrupt has occurred.

For the content of the status register, refer to “Testcard Status Register”
in the Agilent E2925B Opt.320 C-API/PPR Reference.

Functions Overview
The following figure shows the functions available to access the status
register of the testcard.

Programming Steps Executing a test program requires access to the testcard status register
as follows:

1 Before executing the test program, clear all bits of the testcard status
register with BestStatusRegClear to ensure a definite register
condition. All bits are set to 1.

2 After executing the test program, read the whole content of the
testcard status register with BestStatusRegGet.

Card StatusRegister

B
es

tS
ta

tu
sR

eg
Cl

ea
r(

)

B
es

tS
ta

tu
sR

eg
G

et
()
42 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Card Status Register Access Programming the Framework
Example
The following lines show how to poll the status register to detect the end
of a master run.

do
{

err=BestStatusRegGet(handle, &statusreg); C(err);
}
while(statusreg & 0x01);
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 43

Programming the Framework Card Status Register Access
44 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Analyzer

The task of the PCI analysis is to monitor the PCI bus, to detect specific
events, to measure and evaluate the occurrences of signals on the bus.
The following sections explain how to program the components of the
testcard’s analyzer fulfilling the different tasks:

• “Protocol Observer Programming” on page 47 explains how to mask
rules to be observed and how to read the observer result registers.

• “Timing Check Programming” on page 49 explains how to set up the
timing check, and how to get the results.

• “Programming the Pattern Terms” on page 52 explains all types of
pattern terms, and how to use and program them.

• “Sequencer Programming” on page 55 explains how to program the
sequencers.

Basically, all sequencers on the testcard work in the same manner.
There are many parameters controlling the sequencers. The principles
of the sequencers are explained, and an example of using the trace
memory trigger sequence is provided to show how to program the
sequencers.

• “Performance Measurement Programming” on page 64 explains how
to program the performance measures.

• “Trace Memory Programming” on page 70 explains how to use the
trace memory and how to program its sequencer and the storage
qualifier. How to upload and evaluate the contents of the trace
memory is also shown.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 45

Programming the Analyzer
Analyzer Components The following figure shows the components of the Analyzer with its
inputs and outputs and from where the results of the analysis can be
taken.

Inputs are:

• 94 line PCI signals: address and data lines, byte enables, sideband
signals and so forth

• additional information generated by the observer

• exerciser signals: master and target marker, different outputs from
their statemachines, and so forth.

• 12 line external trigger input

• 8 line static I/O

Results can be taken from:

• Result and Error Registers

• Trace Memory

• Performance Measures

The outputs can be used to trigger external devices.

The analyzer and exerciser of one testcard can be used in parallel. This
allows you to set up the analyzer to monitor exerciser transactions.

Analyzer

Timing Check

PCI Bus: Address and Data (AD[63::0]), ByteEnables, Sideband Signals etc. (94 lines)

Signal Selection and Alignment

Pattern
Term 0

Pattern
Term 3

Pattern
Term 2

Pattern
Term 1

Exerciser
Information

Trace Memory

Trigger
Storage
Qualifier

...

Static I/O

External
Trigger
Output

Performance
Measure 0

Performance
Measure 1

Performance
Measure ...

Performance
Measure 7

= Sequencer

Pattern
Term 21

Pattern
Term 24

Pattern
Term 23

Pattern
Term 22

Protocol Observer

Error Register

Accumulated First

Result
Register

Status
Register
46 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Protocol Observer Programming Programming the Analyzer
Protocol Observer Programming

The protocol observer monitors 53 different protocol rules
simultaneously. The protocol rules refer to PCI specification rules. An
“any error” output for triggering purposes is provided, as well as
registers to latch the first occurring errors and the accumulating
subsequent errors.

Error Register Contents The protocol observer provides two error registers containing:

• Bits for the protocol rule violations that have occurred first. Often the
first rule violations are the reason for subsequent rule violations.

Each individual rule can be masked from being detected as “first rule
violation”. This allows you to exclude rule violations prior to those of
your interest from triggering the analyzer.

• A flag bit for each rule violated during observation.

Error Register Design Both of the following registers hold a flag bit for each rule and, therefore,
consist of two registers each with a length of 32 bits.

The contents of the error registers can be read by means of the testcard
C-API, which converts it into a text string describing the violated rule.

Further Use A detected protocol violation can:

• be used as input for pattern terms (see “Programming the Pattern

Terms” on page 52).

• trigger the trace memory (see “Trace Memory Programming” on

page 70).

The rule violation(s) cause a “bus error”, which can be used as a
trigger signal. It is aligned to the first clock at which the error was
detected.

TIP This holds true except for parity errors: they are aligned to the transfer
cycle where data does not match the PAR signal. Using a storage
qualifier allows for storing only the incorrect data phases.

Accumulated Errors 2 Accumulated Errors

First ErrorFirst Error 2

0313263

0313263

Bit Position:

Bit Position:
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 47

Programming the Analyzer Protocol Observer Programming
Functions Overview
The Agilent E2925B testcard’s programming interface provides functions
for programming the protocol observer. The available functions and their
usage is shown by describing the programming steps.

Programming Steps Programming the protocol observer requires the following steps:

1 Set the observer properties.

To ensure that all protocol rules will be observed, set all mask bits to 0.

Use BestObsDefaultSet.

2 Specify a mask.

Set the protocol rules to be ignored in the “first error register”.

Use BestObsMaskSet.

3 Request the protocol errors.

To determine whether rules have been violated, check whether the
“first error” result registers in the observer status register hold a value.

Use BestObsStatusGet.

4 Request the error string.

To read the errors, convert the information read from the registers
into a text string and send it, for example, to a file or to standard
output.

Use BestObsErrResultGet.

Example
Task Set up the protocol observer to mask the PARITY_1 rule, read the detected

protocol errors and print the error string.

Implementation /* Set the observer properties to their default values. */
err=BestObsPropDefaultSet(handle); C(err);

/* Specify a Mask: Mask the rules PARITY_1 by setting their bits in
the mask register to 1 */
err=BestObsMaskSet(handle, B_R_PARITY_1, 1); C(err);

/* Check the value in the “first error” result registers in the
observer status register. */
err=BestObsStatusGet(handle, B_OBS_FIRSTERR, &firsterr1); C(err);
err=BestObsStatusGet(handle, B_OBS_FIRSTERR2, &firsterr2); C(err);
48 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Timing Check Programming Programming the Analyzer
/* Read the lower bits of the accumulated error register. */
err=BestObsStatusGet(handle, B_OBS_ACCUERR, &accuerr1); C(err);

/* Read the upper bits of the accumulated error register. */
err=BestObsStatusGet(handle, B_OBS_ACCUERR2, &accuerr2); C(err);

/* Clear the observer status register. */
err=BestObsStatusClear(handle);C(err);

/* Print the error string using the error register values. */
err=BestObsErrResultGet(handle, accuerr1, accuerr2, &errtxt); C(err) ;
printf (“Protocol error: %s\n”, errtxt);

Timing Check Programming

The testcard checks the PCI bus for setup and hold timing violations in
real-time. Checking is always performed while the testcard is powered.
You can disable individual signals if their observation interferes with
your test.

For a list of all available signals, refer to “b_signaltype (for Timing

Check)” in the Agilent E2925B Opt. 320 C-API/PPR Reference.

NOTE At present, the timing check is only available for 33 MHz PCI busses.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 49

Programming the Analyzer Timing Check Programming
Functions Overview
The Agilent E2925B testcard’s programming interface provides functions
for programming the timing checker. The available functions and their
usage is shown by describing the programming steps.

Programming Steps Programming the timing checker requires the following steps:

1 Enable all signals and preset the set-up and hold time to the values
according to the PCI Specification.

Use BestTimCheckDefaultSet.

2 To set-up and hold time to values other than the PCI Specification
defaults, set the generic timing check properties to allow changes.

Use BestTimCheckGenPropSet.

3 To select the signals to be checked for your test, mask the signals that
are not relevant.

Use BestTimCheckMaskSet.

4 Set up the timing parameters in the preparation register.

Use BestTimCheckPropSet.

5 Write the settings to the testcard.

Use BestTimCheckProg.

6 To determine whether the PCI frequency is stable enough for a proper
timing check, read the timing check status .

Use BestTimCheckStatusGet.

NOTE The result registers of the timing check are cleared automatically and
the check is continued with the new parameters.

7 Determine whether a timing violation has occurred and print the
textual report.

Use BestTimCheckResultGet.
50 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Timing Check Programming Programming the Analyzer
Example
Task Program a timing check against a set-up time of 6 ns and a hold time of

–250 ps at a bus speed of 33 MHz.

Implementation /* Set the timing check to default values. */
BestTimCheckDefaultSet(handle);

/* Set the generic timing check property. */
BestTimCheckGenPropSet(handle,B_TCGEN_SPEC,0);

/* Set up the timing parameters in the preparation register and
write them to the card. */
BestTimCheckPropSet(handle,B_TC_SETUP_TIME,6000);
BestTimCheckPropSet(handle,B_TC_HOLD_TIME,250);
BestTimCheckPropSet(handle,B_TC_HSIGN,1);

BestTimCheckProg(handle);

At this point of the program, it is expected that some traffic can be found
on the PCI bus to see whether signals are violated.

/* Read the timing check status to determine whether the PCI
frequency is stable enough for a proper timing check. */

BestTimCheckStatusGet(handle,B_TC_TCSTAT,&status);
if (status & B_TC_ERROR)
{
printf("Timing checker data incorrect because frequency has
changed !\n");
exit (1);

}

/* Determine whether a timing violation has occurred and print a
textual report. */

if (status & B_TC_VIOLATION)
{
printf("Timing violation occurred\n");
BestTimCheckResultGet(handle,&errorreport);
printf("%s\n",errorreport);

}

Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 51

Programming the Analyzer Programming the Pattern Terms
Programming the Pattern Terms

The pattern terms are programmed using logical equations that define
the pattern to be recognized. Each pattern term is identified by its
pattern term identifier (pt0 ... pt23). For a list of valid pattern term
identifiers, see “Pattern Term Identifiers” in the Agilent E2925B Opt.

320 C-API/PPR Reference.

The pattern terms are programmed by means of signals and logical
operators.

Pattern pt0 can be used either as a standard or as a transitional pattern
term. Different operators are available for standard and transitional
pattern terms.

Using Pattern Terms The pattern terms (also known as: pattern recognizers) compare bus
states with programmable conditions. Their output (1 = bus pattern
found, 0 = bus pattern not found) can be used:

• as input for sequencers, for example, the trace memory trigger
sequencer (see “Sequencer Programming” on page 55).

• for storage qualification for the trace memory (see “Trace Memory

Programming” on page 70).

• when counting bus events for performance analysis (see
“Performance Measurement Programming” on page 64).

• for master conditional start based on the detection of a specific event
on the PCI bus (see “Master Run” on page 103).

As input, the pattern terms can use all the signals specified in
“b_signaltype (List of Signals)” in the Agilent E2925B Opt. 320

C-API/PPR Reference.

24 pattern terms (named pt0 … pt23) are implemented on the testcard.
pt0 can be used as input for the trace memory trigger only.
52 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Pattern Terms Programming the Analyzer
Types of Pattern Terms By default, all pattern terms are standard pattern terms. However, the
pattern term pt0 is a special pattern term; it can be switched between
standard pattern term and transitional pattern term.

• Standard pattern terms

The standard pattern terms detect the state of a signal (either 0 or 1)
in contrast to transitional patterns, which detect the change of a
signal.

If a standard pattern term queries multiple signals, all signals are
combined via logical AND.

To allow an easy trigger on any protocol combination, the pattern
recognition of protocol attributes is aligned with the associated data
transfer.

• Transitional pattern term

The transitional pattern term detects state changes of signals. If it
queries multiple signals, all signals are combined via logical OR.

A transitional pattern term can be used for an efficient storage
qualification when samples are to be taken only on changes of
relevant signals.

Functions Overview
Programming Options Programming pattern terms allows the following options:

• To specify a pattern term, use BestPattSet.

This pattern term can be used in the condition strings of a sequencer
description table.

• To set compare patterns for trace memory control, use
BestTracePattPropSet.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 53

Programming the Analyzer Programming the Pattern Terms
Example
Task Program the following three pattern terms:

• Detection of transactions on video memory for triggering:

pt0 = “b_state==3\h && AD32==b8xxx\h”

This makes pattern term pt0 sensitive to address phases
(b_state==3\h) and sensitive to signals on the address/data lines in the
address space between b8000\h and b8FFF\h.

• Filtering of waits from stored data:

pt1 = “b_state==7\h”

This sets up pattern term pt1 to detect data transfers. Inverted pt1
(!pt1) can then be used to filter waits. This condition should be used
as a storage qualifier.

• Detecting the end of a data transfer:

pt2 = “b_state==1”

This makes pattern term pt2 sensitive to idles and thus to the end of
the data transfer.

Implementation err=BestPattSet(handle, \
B_PATT_TERM_0, \
"b_state==3\h && AD32==0b8xxx\h"); C(err);

err=BestPattSet(handle, \
B_PATT_TERM_1, \
"b_state==7\h"); C(err);

err=BestPattSet(handle, \
B_PATT_TERM_2, \
"b_state==1\h"); C(err);
54 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Sequencer Programming Programming the Analyzer
Sequencer Programming

The sequencers of the testcard detect bus state sequences. The
sequencers use programmable pattern terms to compare bus states with
programmable conditions.

Representive of all sequencers, the figure below shows the trace memory
trigger sequencer. The only difference to other sequencers is its output:
the trace memory trigger signal and the storage qualifier signal.

All sequencers provide an internal memory and state machine, and a
32-bit feedback counter C. The statemachine controls the operation of
the sequencer. The sequencer has 7 input registers. One of the registers is
used for the terminal count of the sequencer’s own feedback counter.
The remaining 6 registers can be used for input from pattern terms and
for state feedback from the sequencer output. A maximum of 25= 32
states is the practical limit—because at least one pattern term is always
needed.

Sequencer Memory
&

State Machine

Output Register Set

Counter C

6

7 Input Registers

From Pattern Terms
(max. 6)

To
Trace Memory Trigger

and
Storage Qualifier

P
re

lo
ad

IN
C

D
E

C

Preload
Value

S
ta

te
(m

ax
.6

)

T
er

m
in

al
C

ou
nt
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 55

Programming the Analyzer Sequencer Programming
Setting up the Sequencer Setting up a sequencer requires the following steps:

1. Building a state diagram.

A sequence consists of states. The sequencer switches between these
states as defined by transition conditions. A state diagram is used to
design the sequence.

State diagrams show the transition conditions and the actions to be
performed upon transition (output conditions).

Example:

2. Programming the pattern terms.

This is described in “Programming the Pattern Terms” on page 52.

3. Setting up and programming the sequencer description table.

The sequencer description table holds the transients. The transients
are programmed using C function calls (or CLI commands). The
sequencer description table may contain up to 256 transients.

The state diagram can easily be translated into a sequencer
description table. Each transition (arrow) in the diagram requires a
transient (a row in the table). Each transient holds the following
properties:

– State

State to which the transient is assigned (start of the arrow).

– Next state

State to which the sequencer should change if the transition
condition occurs (end of the arrow).

– Transition condition

If this condition is true, the sequencer switches to the “next state”.

– Feedback counter enable condition

Output conditions controlling the count operation of the feedback
counter (not used in this example).
56 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Sequencer Programming Programming the Analyzer
– Feedback counter preload conditions

Output conditions to set the feedback counter to its preload value
(not used in this example).

The trace memory trigger sequencer requires in particular:

– Trigger condition

Output condition controlling the trigger signal. The trigger signal
will only be set if this condition is true and if the transient is active.

– Storage qualifier condition

Output condition controlling data sampling (storage qualifier). If
this condition is true for a trace data line, this line will be stored to
trace memory. Otherwise, timestamp information will be stored at
the end of the gap (in normal gap mode).

Example:

The following table shows an excerpt from a sequencer description
table.

The sequencer starts in state 0. It observes the transition conditions
of the current state and performs the actions as defined for an active
transition. If no transition condition is true, the sequencer remains in
the current state and no action is taken.

NOTE When programming the sequencer description table, note the
following behavior of the feedback counter:

– Clock n: The sequencer instructs the counter to decrement.

– Clock n+1: The counter decrements to terminal count.

– Clock n+2: tc input to sequencer is asserted.

There may be additional sequence states and transitions required to
get the desired sequencer behavior. See
<install_dir>\samles\gui\mwi_not8.cli for an example.

Transient No. Current State Next State
Transition
Condition

Output
Conditions

0 0 0 !pt0 Depends on the
sequencer1 0 1 pt0

2 1 1 !pt2

3 1 0 pt2
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 57

Programming the Analyzer Sequencer Programming
NOTE If the preload condition occurs simultaneously with an
increment/decrement condition, the counter amount will be replaced
by the preload value but not incremented or decremented (the preload
condition has priority over the count enables).

Functions Overview
The following figure gives an overview of the sequencer memory
programming model (pattern terms and trigger position counter are not
considered).

Programming Steps Programming the sequencer requires the following steps:

1 Set the preload value of the feedback counter.

Each sequencer is equipped with a preloadable feedback counter. It
can be decremented or loaded, enabling you to specify how often a
sequence must occur before an output signal is set. Its output “tc”
(terminal count) becomes 1 if the counter contains a value of
0xFFFFFFFF (–1).

Use BestTrigSeqGenPropSet.

2 Set all properties in the trigger sequencer description table to default
values.

Use BestTrigSeqPropDefaultSet.

4

0
1
2
3

254
255

...

Transients

BestTrigSeqTranPropSet() BestTrigSeqTranCondPropSet()

Numeric Transition
Properties

TransitionConditionand
Output ConditionProperties

Sequencer DescriptionTable

Sequencer Memory

BestTrigSeqProg()
58 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Sequencer Programming Programming the Analyzer
3 Set numeric transition properties “Current State” and “Next State”.

NOTE All transition conditions of one state must be mutual exclusive. This
means that one and only one transition condition of a state must turn
true at a time. Otherwise, the software will not accept the table
because the table does not uniquely define the sequencer’s behavior.

Use BestTrigSeqTranPropSet.

4 Set conditions in the sequencer description table. Conditions can be:

– transition condition

– conditions to decrement and preload the feedback counter

– trigger condition and storage qualifier condition (only required for
programming the trace memory trigger sequencer)

All conditions (transition, trigger, storage qualifier, counter enable)
are specified as logical expressions. These expressions can either
be set directly to true (1) or false (0), or they can consist of pattern
identifiers referring to pattern terms (pt0, pt1, ...) and the terminal
count (tc) of the feedback counter C.

The programmable pattern terms are used by the sequencer to
detect bus state sequences. They compare bus states with
programmable conditions (for example, “b_state== 3\h &

AD32==b8xxx\h”).

If the programmed condition is true, the sequencer switches to the
“Next State”. Use BestTrigSeqTranCondPropSet.

5 Write the sequencer description table to the sequencer memory.

Use BestTrigSeqProg.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 59

Programming the Analyzer Sequencer Programming
Example
Task As an example, the trace memory trigger sequencer is programmed to do

the following:

1. Capture any state until a transfer to the video memory address space
occurs.

2. After this event, all data should be captured without waits until the
data transfer is complete.

Pattern Terms For this sequence, the following patterns need to be detected and are
therefore assigned to pattern terms:

• pt0 = “b_state==3\h && AD32==b8xxx\h”

Pattern term pt0 detects transactions on video memory.

• pt1 = “b_state==7\h”

Pattern term pt1 filters waits.

• pt2 = “b_state==1\h”

Pattern term pt2 detects the end of the transfer.

Building a State Diagram The following figure shows the state flow for the example.

NOTE In this example, feedback counters are not considered.

The example state diagram shows two states 0 and 1. Two transition
conditions are used for state 0: pt0 and !pt0. State 0 represents the state
before the first access to video memory. At this time all bus states are
stored in the trace memory (storage qualifier set to 1, no filtering).

The sequencer remains in state 0 until pattern term pt0 turns true, that is,
until the first access to video memory. When this event is detected, the
sequencer switches to state 1 and sets the trigger signal to 1 (true).

0 1!pt0

pt0

!pt2

pt2

TransitionConditionsof State 0

TransitionConditionsof State 1

trig � 1
sq � 1

trig � 0
sq � pt1

trig � 0
sq � pt1

trig � 0
sq � 1
60 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Sequencer Programming Programming the Analyzer
The sequencer remains in state 1 until the bus goes idle, or as long as
pattern term pt2 is false. The trigger position counter starts to count
down, and the storage qualifier is set to pt1 to filter out waits. If waits
occur, timestamp information is stored instead of them.

If the trigger position counter does not expire before pt0 turns to 0, the
sequencer switches back to state 0 as soon as the end of the data phase is
detected (pt2 turns true). In this state all data lines will be sampled until
the trace memory is full.

The example results in the following sequencer description table:

NOTE In the table above, only columns that need to be programmed for the
example are shown. The columns “Feedback Counter Enable Condition”
and “Feedback Counter Preload Condition” are skipped for clearness.

The sequencer starts in state 0. It observes the transition conditions of
this state and sets the output conditions (trigger, storage qualifier and
feedback counter count enable) according to the transition condition of
the state that is true. (If none of them are true, the sequencer remains in
the same state.)

In the example, this state is represented by transient 0 while the
transition condition pt0: while the transition condition “transfer to video
memory” does not become true the storage qualifier condition is set to 1:
all states are sampled into trace memory.

If condition pt0 becomes true, transient 1 is valid: the sequencer sets the
trigger condition to 1 and moves to state 1 (“next state”).

Now the transition conditions of state 1 (transients 2 and 3) are observed
and the storage qualifier condition is set to pt1, which filters waits. If
condition pt2, end of data transfer, becomes true (transient 3), the
sequencer switches back to state 0 (“next state”).

Transient No. State Next State
Transition
Condition

Trigger
Condition
(Output)

Storage
Qualifier
Condition
(Output) Description

0 0 0 !pt0 0 1 Before trigger event

1 0 1 pt0 1 1 Trigger event occurred
(write to video memory)

2 1 1 !pt2 0 pt1 Sample without waits

3 1 0 pt2 0 pt1 Transfer completed
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 61

Programming the Analyzer Sequencer Programming
Implementation The following C program fragment shows the programming for the
example. It refers to the trace memory trigger programming. For other
sequencers, similar commands are available.

/* Initialize the trace memory trigger sequencer description table.*/
err=BestTrigSeqPropDefaultSet(handle); C(err);

/* Preloads the trace memory trigger sequencer.*/
err=BestTrigSeqGenPropSet(handle, \

B_TRIGSEQGEN_CTRC_PREL, \
32); C(err);

/* Initialize and set up transient 0. */
err=BestTrigSeqTranPropDefaultSet(handle, 0); C(err);
err=BestTrigSeqTranPropSet(handle, 0, B_TRIGSEQ_STATE, 0); C(err);
err=BestTrigSeqTranPropSet(handle, 0, B_TRIGSEQ_NEXTSTATE, 0);
C(err);
err=BestTrigSeqTranCondPropSet(handle, \

0, B_TRIGSEQ_XCOND, "!pt0"); C(err);

err=BestTrigSeqTranCondPropSet(handle, \
0, B_TRIGSEQ_TRIGCOND, "0"); C(err);

err=BestTrigSeqTranCondPropSet(handle, \
0, B_TRIGSEQ_SQCOND, "1"); C(err);

/* Initialize and set up transient 1. */
err=BestTrigSeqTranPropDefaultSet(handle, 1); C(err);
err=BestTrigSeqTranPropSet(handle, 1, B_TRIGSEQ_STATE, 0); C(err);
err=BestTrigSeqTranPropSet(handle, 1, B_TRIGSEQ_NEXTSTATE, 1);
C(err);
err=BestTrigSeqTranCondPropSet(handle, \

1, B_TRIGSEQ_XCOND, "pt0"); C(err);
err=BestTrigSeqTranCondPropSet(handle, \

1, B_TRIGSEQ_TRIGCOND, "1"); C(err);

err=BestTrigSeqTranCondPropSet(handle, \
1, B_TRIGSEQ_SQCOND, "1"); C(err);

/* Initialize and set up transient 2. */
err=BestTrigSeqTranPropDefaultSet(handle, 2); C(err);
err=BestTrigSeqTranPropSet(handle, 2, B_TRIGSEQ_STATE, 1); C(err);
err=BestTrigSeqTranPropSet(handle, 2, B_TRIGSEQ_NEXTSTATE, 1);
C(err);
err=BestTrigSeqTranCondPropSet(handle, \

2, B_TRIGSEQ_XCOND, "!pt2"); C(err);
err=BestTrigSeqTranCondPropSet(handle, \

2, B_TRIGSEQ_TRIGCOND, "0"); C(err);
err=BestTrigSeqTranCondPropSet(handle, \

2, B_TRIGSEQ_SQCOND, "pt1"); C(err);
62 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Sequencer Programming Programming the Analyzer
/* Initialize and set up transient 3. */
err=BestTrigSeqTranPropDefaultSet(handle, 3); C(err);
err=BestTrigSeqTranPropSet(handle, 3, B_TRIGSEQ_STATE, 1); C(err);
err=BestTrigSeqTranPropSet(handle, 3, B_TRIGSEQ_NEXTSTATE, 0);
C(err);
err=BestTrigSeqTranCondPropSet(handle, \

3, B_TRIGSEQ_XCOND, "pt2"); C(err);
err=BestTrigSeqTranCondPropSet(handle, \

3, B_TRIGSEQ_TRIGCOND, "0"); C(err);
err=BestTrigSeqTranCondPropSet(handle, \

3, B_TRIGSEQ_SQCOND, "pt1"); C(err);

/* Write the sequencer description table to the sequencer memory.
The transition conditions are checked for consistency. */
err=BestTrigSeqProg(handle); C(err);
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 63

Programming the Analyzer Performance Measurement Programming
Performance Measurement
Programming

The testcard features eight performance measures, which are built up
from two 64-bit counters and a sequencer.

The counters of the performance measures are used for real-time
performance measurements. They count the occurrences of (freely
programmable) events or sequences of events, and thus allow a number
of programmable measurements to be registered in real-time.

For an overview of a performance measurement, refer to ”Operation

Principles” in the Agilent E2925B PCI Analyzer User’s Guide.

Performance measurement can be divided into the following steps:

1. Setting up pattern terms and sequencers.

For more information, refer to “Programming the Pattern Terms” on

page 52 and “Sequencer Programming” on page 55.

2. Programming the sequencer for performance measurement.

For this purpose, the C-API provides an own function set. See
“Functions Overview” on page 65.

3. Running the measurement and viewing the results.

For this purpose, the measures must be periodically updated, read
and the desired values (for example, efficiency) must be computed.

To compute the desired values, the counter values (reference counter
and counters A and B) are needed.

See “Example” on page 67.
64 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Performance Measurement Programming Programming the Analyzer
Functions Overview
The following figure gives an overview of the performance sequencer
memory programming model.

Programming Steps Programming performance measurements requires the following steps:

1 Set the preload value for feedback counter C.

Use BestPerfSeqGenPropSet.

With this function, you can also determine the mode used to
increment the nominator counter A (increment by one or by the
number of byte enables).

Sequencer Memory

BestPerfSeqProg()

Counter B Counter A

Adder

Counter B
Enable

Counter A
Enable FromPCI Bus

ByteEnables

Upload
ToControl PC

4

0
1
2
3

254
255

...

Transients

BestPerfSeqTranPropSet() BestPerfSeqTranCondPropSet()

Numeric Transition
Properties

TransitionConditionand
Output ConditionProperties

Sequencer DescriptionTable

Sequencer

BestPerfCtrRead()

BestPerfRun()

BestPerfUpdate()
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 65

Programming the Analyzer Performance Measurement Programming
2 Set all properties in the performance sequencer description table to
default values.

Use BestPerfSeqPropDefaultSet.

3 Set numeric transition properties “Current State” and “Next State”.

NOTE All transition conditions of one state must be mutual exclusive. This
means, that one and only one transition condition of a state must turn
true at a time. Otherwise, the software will not accept the table
because the table does not uniquely define the sequencer’s behavior.

Use BestPerfSeqTranPropSet.

4 Set conditions in the performance sequencer description table.
Conditions can be:

– transition condition

– conditions to increment nominator or denominator counter

– conditions to decrement or preload the feedback counter

All conditions are specified as logical expressions. These expressions
can either be set directly to true (1) or false (0), or they can consist of
pattern identifiers referring to pattern terms (pt0, pt1, ...) and the
terminal count (tc) of the feedback counter C.

If the programmed condition is true, the sequencer switches to the
“Next State”.

Use BestPerfSeqTranCondPropSet.

5 Write the sequencer description table to the sequencer memory.

Use BestPerfSeqProg.

6 To run the measurement, start the counters.

Use BestPerfRun.

7 To check whether the counters have started, and to check for
overflows of each individual counter, read out the performance status
register.

Use BestPerfStatusGet.

8 To compute required data and to view the results, first update the
counter values and then read them.

Use BestPerfUpdate and BestPerfCtrRead.

9 You can stop the performance measurement manually.

Use BestPerfStop.
66 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Performance Measurement Programming Programming the Analyzer
Example
Task To explain how to program a performance measure, an example trace

measurement is used. It is intended to measure the following:

• the average bus non-idle time in percent

• the efficiency in percent

Pattern Terms The pattern terms are to be set up as follows:

• pt4= “b_state==7\h”

To measure the amount of transferred data by using IRDY# and
TRDY#, pt4 is sensitive to data transfers.

NOTE IRDY# and FRAME# cannot be combined directly, because OR is not
allowed in the pattern term equation. Refer to “Standard Pattern

Term Operators” in the Agilent E2925B Opt. 320 C-API/PPR

Reference.

• pt5 = “b_state==1\h”

To measure the non-idle time of the bus, pattern term pt5 is sensitive
to idle times.

The sequencer must be programmed to remain in state 0 only,
incrementing counter A and B if their enable conditions are true. In the
example, counter A and counter B of performance measure 0 are used.
The sequencer description table must be set up as follows:

NOTE In the table above, only columns are shown that need to be programmed
for the example. The columns “Feedback Counter Enable Condition”,
and “Feedback Counter Preload Condition” are skipped for clarity.

Transient No. State Next State
Transition
Condition

Counter A
Enable
Condition
(Output)

Counter B
Enable
Condition
(Output)

0 0 0 1 pt4 !pt5
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 67

Programming the Analyzer Performance Measurement Programming
Implementation /* Implement the pattern terms and the sequencer as described
above.*/

/* Set the generic properties of performance measure 0 to default
values to set the feedback counter value to 0. */
err=BestPerfGenPropDefaultSet(handle,B_PERFMEAS_0); C(err);

/* Program the pattern terms pt4, pt5 and pt6. These are the
pattern terms used in the sequencer conditions. */
err=BestPattSet(handle,B_PATT_TERM_4,"b_state==7\h"); C(err);
err=BestPattSet(handle,B_PATT_TERM_5,"b_state==1\h"); C(err);

/* Set up the sequencer description table of performance measure 0
to its default values. */
err=BestPerfSeqPropDefaultSet(handle,B_PERFMEAS_0); C(err);

/* Initialize transient 0. */
err=BestPerfSeqTranPropDefaultSet(handle,B_PERFMEAS_0, 0); C(err);

/* Set the counter A of performance measure 0 to count the number
of transferred bytes (byte enables). */
err=BestPerfGenPropSet(handle, \

B_PERFMEAS_0, \
B_PERFGEN_CAMODE, \
B_CAMODE_INCRBYTEN); C(err);

/* Set up transient 0. */
err = BestPerfSeqTranPropSet(handle, \

B_PERFMEAS_0, \
0, \
B_PERFSEQ_STATE, \
0);C(err);

err = BestPerfSeqTranPropSet(handle, \
B_PERFMEAS_0, \
0, \
B_PERFSEQ_NEXTSTATE, \
0); C(err);

err = BestPerfSeqTranCondPropSet(handle, \
B_PERFMEAS_0, \
0, \
B_PERFSEQ_XCOND, \
"1"); C(err);

err = BestPerfSeqTranCondPropSet(handle, \
B_PERFMEAS_0, \
0, \
B_PERFSEQ_CA_EN, \
"pt4"); C(err);

err = BestPerfSeqTranCondPropSet(handle, \
B_PERFMEAS_0, \
0, \
B_PERFSEQ_CB_EN, \
"!pt5"); C(err);
68 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Performance Measurement Programming Programming the Analyzer
/* Program the sequencer of performance measure 0. */
err=BestPerfSeqProg(handle,B_PERFMEAS_0); C(err);

/* Start the counters. */
err=BestPerfRun(handle); C(err);

/* The following loop periodically updates the measures, reads
them, and computes the non-idle time and efficiency values. To
compute the percentage of non-idle time, the total amount of time
is taken from the reference counter value.*/

while(1)
{

err=BestPerfUpdate(handle); C(err);

/* Read the counter values*/
err=BestPerfCtrRead(handle, \

B_PERFMEAS_0, \
B_PERFCTR_A, \
&counter_a); C(err);

err=BestPerfCtrRead(handle, \
B_PERFMEAS_0, \
B_PERFCTR_B, \
&counter_b); C(err);

err=BestPerfCtrRead(handle, \
B_PERFMEAS_0, \
B_REFCTR, \
&ref_counter); C(err);

/ * Compute the required data, non-idle time and overall transfer
efficiency. */

non_idle = ((float)counter_b / (float)ref_counter) * 100;
efficiency = ((float)counter_a / ((float)counter_b * 4)) * 100;

/* Print the results to the standard output once in 1000 ms. */
printf("Bus Non-Idle: %2.2f%% Efficiency: %2.2f%% \r", \

non_idle,efficiency);
sleep(1000);

} /* end while */
return(0);
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 69

Programming the Analyzer Trace Memory Programming
Trace Memory Programming

The figure below gives an overview of the components of the trace
memory:

Trace Memory

Memory Control Logic

From
Sequencer

Sequencer

Trigger Position
Counter

Trigger
Storage
Qualifier

Upload
To Control PC

From Exerciser
Master/Target

active
Transaction

complete
Lock

From Observer
Bus States

Transaction Attributes
Protocol Check

External Trigger
Lines

Static I/O

From PCI Bus
Data

Address
Signals

Preload
Value
70 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Trace Memory Programming Programming the Analyzer
Filling the Trace Memory The trace memory is filled depending on storage qualification. In
sequencer mode, a trigger position counter determines how many
states will be sampled into the trace memory after the trigger event
occurs. The contents of the trace memory can be controlled by a
programmable storage qualifier that suppresses undesired states. If
one or more lines are filtered, a gap information is stored instead.

The following figure shows how the trace memory is filled.

Before using the trace memory, pattern terms must be defined and the
trace memory trigger sequencer must be programmed. See
“Programming the Pattern Terms” on page 52 and “Sequencer

Programming” on page 55.

Bus Events

Storage
Qualification

Run Start Trigger Event End of Measurement
(Trigger Position
Counter Expired)

Storage
Qualification

Storage
Qualification

Memory Contents

Trigger

G
ap

In
fo

G
ap

In
fo

G
ap

In
fo
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 71

Programming the Analyzer Trace Memory Programming
Functions Overview
Programming Steps Programming the trace memory requires the following steps:

1 Set up the trace memory, preload the trigger position counter and set
the gap mode.

Use BestTracePropSet.

2 Program the sequencer and the pattern terms.

3 Run the test by starting the trigger sequencer and the trace memory.

Use BestTraceRun.

The course of the test can be monitored:

– by polling the trace status register, or

– by watching the LEDs on the board.

This is particularly useful when the command line interface is used.
The LEDs indicate whether trace memory sampling has stopped
and whether the trigger has occurred.

4 If the run should be manually stopped, use BestTraceStop.

In this case, an artificial trigger point is set. The trace memory
contains only samples prior to stoppage (100% pretrigger history).

NOTE The run stops automatically if the memory is full. This can take a lot of
time if storage qualifying suppresses a lot of samples.

5 Upload the trace memory depending on an occurred trigger event,
store the trace memory line number where the trigger event has
occurred.

Use BestTraceStatusGet.

6 Read trace data from the trace memory, begin with the line where the
trigger event has occurred.

Use BestTraceDataGet.

7 Analyze the data lines for certain signals, proceed as follows:

– Determine the position and size of the desired signals within the
data line.

Use BestTraceBitPosGet.

– Terminate the connection.

– Print out signal status information.
72 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Trace Memory Programming Programming the Analyzer
Example
NOTE In this example, it is assumed that pattern terms and sequencer are

programmed as described in “Programming the Pattern Terms” on

page 52 and “Sequencer Programming” on page 55. Furthermore, it is
assumed that the preload value of the trigger position counter is left at
its default value, so that the trigger event will be found in the center of
the trace memory.

/* Sets the gap mode to store exhaustive gap information (normal
gap mode). */
err=BestTracePropSet(handle, B_TRC_ANALYZER_MODE, B_PERFORMANCE);

/* Programming the sequencer description table and the pattern
terms goes in here. */

/* … */

/* Start the trigger sequencer and trace memory. */
err=BestTraceRun(handle); C(err);

/* Poll the trace status register. */
do
{
err=BestTraceStatusGet(handle, B_TRC_STAT, &status_reg);

} while (status_reg & 0x01);

/ * Stop the run. */
err=BestTraceStop(handle); C(err);

/* Read the trace memory line number where the trigger event has
occurred and stores it in the “triggerline” variable. */
err=BestTraceStatusGet(handle, \

B_TRC_TRIGPOINT, triggerline); C(err);

/* Write 32 lines of trace data are written to the variable
“tracedata” (you need to assign a buffer for the trace data
previously). The program reads them from the trace memory,
beginning with the line stored in “triggerline” from the previous
call. */
err=BestTraceDataGet(handle, triggerline, 32, tracedata); C(err);

/* Interprete the captured data.
Note that you need to assign buffer for the variables, this is not
considered in the example code fragment. */
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 73

Programming the Analyzer Trace Memory Programming
/* Determine the position and size of the desired signals within
the data line. */
err = BestTraceBitPosGet(handle, B_SIG_AD32, &ad32_pos, &ad32_len);
C(err);
err = BestTraceBitPosGet(handle, B_SIG_CBE3_0, &cbe_pos, &cbe_len);
C(err);
err = BestTraceBitPosGet(handle, B_SIG_FRAME, &frame_pos,
&frame_len); C(err);
err = BestTraceBitPosGet(handle, B_SIG_IRDY, &irdy_pos, &irdy_len);
C(err);
err = BestTraceBitPosGet(handle, B_SIG_TRDY, &trdy_pos, &trdy_len);
C(err);
err = BestTraceBitPosGet(handle, B_SIG_DEVSEL, &devsel_pos,
&devsel_len); C(err);
err = BestTraceBitPosGet(handle, B_SIG_STOP, &stop_pos, &stop_len);
C(err);

/* Terminate the connection. */
err=BestDisconnect(handle); C(err);
err=BestClose(handle); C(err);

/* Print out signal status information. */
printf("Line # \tAD\tC/BE\tCTRL\n");

for (i = 0;i <= (lines-upload_start)*bytes_per_line/4;
i+=(bytes_per_line/4))
{

printf("%06d \t%08lx \t %1lx \t%c%c%c%c%c\n",
disp_start,
tptr[i + ad32_pos/32],
(tptr[i + cbe_pos/32]>>(cbe_pos%32)) & ((1<<cbe_len)-1),
(((tptr[i + frame_pos/32]>>(frame_pos%32)) & 1) ? ' ' : 'F'),

//FRAME
(((tptr[i + irdy_pos/32]>>(irdy_pos%32)) & 1) ? ' ' : 'I'),

//IRDY
(((tptr[i + trdy_pos/32]>>(trdy_pos%32)) & 1) ? ' ' : 'T'),

//TRDY
(((tptr[i + devsel_pos/32]>>(devsel_pos%32)) & 1) ? ' ' :

'D'), //DEVSEL
(((tptr[i + stop_pos/32]>>(stop_pos%32)) & 1) ? ' ' : 'S'));

//STOP
disp_start++;

}
return (0);
74 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser

The exerciser provides a master and a target and some resources that are
shared by both. All these can be controlled by functions of the C-API.

The following figure shows the components of the testcard.

NOTE If master and target of the testcard are set up to transfer data from one to
the other, the target has no access to data memory. If the master writes
to the target, data memory will remain unchanged. If the master reads
from target, it will receive dummy data.

The following sections explain how to program the components of the
testcard’s exerciser:

• “Reading from and Writing to the Memories” on page 77 describes
the principles of programming the memories.

• “Programming the Exerciser as a Master Device” on page 80
describes how to program the data transfer.

• “Programming the Exerciser as a Target Device” on page 105

Data Memory

Configuration Space
– Header
– Mailbox Registers
– Prog. Registers

Master
– State Machine
– Block Transfer Memory
– Attribute Memory
– Byte Enable Memory

Target
– State Machine
– Decoders
– Attribute Memory

Data Compare Unit

CPU Port

Static I/O

PCI Bus
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 75

Programming the Exerciser
• “Data Memory and Compare Unit Programming” on page 142

• “Host Access Programming” on page 144

• “Interrupt Programming” on page 146 describes how to generate a
PCI interrupt with the exerciser.

• “Built-In Test Programming” on page 147 describes prepared tests,
which can be set up and be performed with less programming effort.
76 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Reading from and Writing to the Memories Programming the Exerciser
Reading from and Writing to the
Memories

When programming the memories, they are accessed via a preparation
register. This register can hold all properties of one memory line.

To program the memory, you can:

• Program this register first and then download it to a memory line.

• Read a memory line into the register, read and modify its values and
download the modified registers to a memory line.

Preparation Register The following figure shows the principle:

When programming a memory line with the content of the preparation
register, a page pointer and a line pointer are passed with the referring
command or function. These pointers are used to identify the exact
memory line for reading and writing between the memory and
preparation register.

Register

Page x

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Prog(page, offset) Read(page, offset)

S
et

()

G
et

()

D
ef

au
ltS

et
()
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 77

Programming the Exerciser Exerciser Block Diagram
Exerciser Block Diagram

The following figure shows a detailed block diagram of the testcard’s
exerciser. Experience PCI exerciser users can use this diagram to see
exactly how the testcard's exerciser functions.

This figure gives a precise picture of the exerciser components:

• the components of the master are shown on the left side

• the components of the target are shown on the right side

• the shared resources are shown between them:

– on-board data memory

– register files

– compare unit

PCI Bus

Master Block Transfer Memory

Master Byte
Enable
Memory

Master Attribute
Memory

Master State
Machine

Data Memory Register File
Target Attribute

Memory

Data Path and Compare Unit

C
on

di
tio

na
lS

ta
rt

E
na

bl
e

B
us

A
dd

re
ss

C
om

m
an

d
B

yt
e

E
na

bl
es

In
te

rn
al

A
dd

re
ss

Target Decoders
(Address Mapping)

In
te

rn
al

A
dd

re
ss

In
te

rn
al

A
dd

re
ss

Data

To CPU

Target State
Machine

Master
Marker

Target
Marker

StateState

Master
Conditional

Start

Fast
Pattern
Term
78 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Exerciser Block Diagram Programming the Exerciser
The central component of both the master and the target is its state

machine. This controls the testcard’s behavior as a master or target and
is controlled by programmable memories (for example, protocol
behavior is controlled by the attribute memories).

The state machines provide a “State” signal, the attribute memories
provide a “Marker”. Both, “State” signal and “Marker” are exerciser

outputs and can be used by the testcard’s analyzer, for example to
trigger the trace memory when “Marker” or “State” signals show
particular values.

The “Fast Pattern Term” is exerciser input from the testcard’s analyzer
and is used for the conditional start mode of the master state machine.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 79

Programming the Exerciser Programming the Exerciser as a Master Device
Programming the Exerciser as a
Master Device

To program the testcard’s exerciser as a master device means
programming the testcard to initiate data transfers via PCI bus either to a
target device under test, or to the testcard’s own target. The latter test
case can be used to increase bus load.

The following need to be programmed for the testcard to perform data
transfer:

1. Generic master properties.

Generic master properties determine the behavior of the testcard and
are valid during a complete master run. They determine, for example,
whether the master should start immediately or conditionally after a
trigger event.

See “Programming Generic Master Properties” on page 82.

2. The master transactions to be performed.

Transactions can be summarized into blocks. The properties of each
block and its transactions such as PCI bus address, number of dwords
to be transferred or bus command, are programmed in the block
transfer memory.

See “Master Block Transfer Memory Programming” on page 85.

3. The protocol attributes to be used with the transactions.

Protocol attributes determine the behavior during the various phases
of each transaction, for example, whether errors should be signaled
during address phases or how many waits should be inserted during a
data phase. This information is located in the master attribute
memory.

See “Master Attribute Memory Programming” on page 89.

4. The data to be used for the transactions.

For this purpose, the data memory can be used as a data resource by
the master.

See “Data Memory and Compare Unit Programming” on page 142.

5. The number of byte enables to be set in a data phase.

See “Byte Enable Memory Programming” on page 101.

6. The way of running the master.

See “Master Run” on page 103.
80 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Master Device Programming the Exerciser
Master Memories The following figure shows the various memories needed to initiate
transactions on the PCI bus and gives an overview of their contents.

Master Block Transfer Memorycontains properties per block

Generic Master Properties
valid for a complete master run

Dual
Address
Cycle

Conditional
Start

Attribute Page ByteEnable Internal
Address

Master Attribute Memory
contains protocol attributes per bus phase

Address
Phase

DataPhase Burst Length Control

Bus
Command

ContinueNumber
of

Dwords

Bus
Address

Compare

Pointer toMaster AttributeMemory

Pointer toByteEnableMemory

Pointer toDataMemory

Byte Enable Memory
contains byte enable settings per data phase

Lines0to15: FixByteEnableValues (0to15)

Lines16to255: ProgrammableByteEnableValues

contains data to be transferred
Data Memory
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 81

Programming the Exerciser Programming the Exerciser as a Master Device
Programming Generic Master Properties
You can program the following generic master properties:

• Run Mode, Trigger and Delay Counter

The run mode determines whether the master should start
immediately, conditionally after a trigger event, or after a
programmable delay.

• Repeat Mode

The master operation can be executed only once, or run repeatedly.

• Master Attribute Pointer Mode

This property determines at what time the internal master attribute
memory pointer is reset to start an attribute memory page (after each
block, after each block page, or not at all).

• Invert Data

This property determines whether or not outgoing data bytes that are
masked by byte enables are inverted (refer to “Data Memory and

Compare Unit Programming” on page 142).

The following properties refer to entries in the testcard’s configuration
space:

• Latency Timer

The testcard’s latency timer can be preset. It can be shut off for testing
outside of the PCI specification.

• MWI Mode

The testcard’s “Memory Write and Invalidate” bit can be set or reset.

• “Master Enable” Bit

The testcard’s “Master Enable” bit can be set or reset.

• “Fast Back-to-Back” Bit

The testcard’s “Fast Back-to-Back” bit can be set or reset.

• Cacheline Size

The cacheline size that is assumed for the system under test can be
determined.
82 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Master Device Programming the Exerciser
Functions Overview
The following figure shows the functions used to program the generic
master properties memory.

The generic master properties are not programmed using a preparation
register. The generic master property memory is simply programmed by
…Set() and …Get() functions, so that no further description is needed.

Generic Master PropertiesMemory
valid for complete master run

B
es

tM
as

te
rG

en
Pr

op
Se

t()

B
es

tM
as

te
rG

en
Pr

op
D

ef
au

ltS
et

()

B
es

tM
as

te
rG

en
Pr

op
G

et
()
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 83

Programming the Exerciser Programming the Exerciser as a Master Device
Example

Task Program an immediate, single master transfer. Although the mode is
immediate, the transactions should start only after the run function has
been called and the arbiter has granted the bus to the testcard.

Implementation /* Set all generic master properties to defaults and enable the
master. */
err=BestMasterGenPropDefaultSet(handle); C(err);
err=BestMasterGenPropSet(handle, B_MGEN_MASTERENABLE,1);C(err);

/* Program the master to start after a trigger pattern has been
detected on the bus, and then to run indefinitely.*/

/* Setting the run mode to ”wait on delay”. */
err=BestMasterGenPropSet(handle, \

B_MGEN_RUNMODE, \
B_RUNMODE_WONDELAY);C(err);

/* Set a trigger pattern. */
err=BestMasterCondStartPattSet(handle, \

”b_state=3\\h & CBE3_0=7\\h & AD32=b8xxx\\h”); \
C(err);

/* Set the repeat mode to ”infinite”. */
err=BestMasterGenPropSet(handle, \

B_MGEN_REPEATMODE, \
B_REPEATMODE_INFINITE);C(err);

printf (”generic run property infinite programmed\n”);
84 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Master Device Programming the Exerciser
Master Block Transfer Memory Programming
Memory Contents All properties needed for a bus transfer, for example, the addresses from

and to where data is to be transferred, must be programmed to the
master block transfer memory. The memory cannot be accessed directly,
so reading from and writing to the memory is performed via the
preparation register (see “Programming the Exerciser as a Master

Device” on page 80). The master block transfer memory also holds
pointers to the other memories, which control the exerciser behavior per
bus phase (master attribute memory, byte enable memory, data
memory).

For a detailed description of all programmable properties, please refer to
the ”Transaction Properties” in the Agilent E2925B Opt. 300 PCI

Exerciser User’s Guide.

Before you start programming the properties to the memory, you should
have a good knowledge of the memory design.

Master Block Transfer Memory
Design

The memory is organized in 16 pages: page 0 contains default values,
pages 1 to 15 are programmable. Each page contains 17 lines, each line
represents one block transfer. This results in 255 programmable lines.

The following figure shows how the master block transfer memory is
designed and gives examples for programmed pages.

NOTprogrammable

programmable

...

0

1

2

3

4

Page 2

16

...

End of Page

Page 1
0

1

2

3

4

16

...

Page 0 0

1

16

0

1

2

3

4

Page 3

...

16

...

0

1
Page 15

Endof Page

...

16

...

programmed
page
(Example 1)

programmed
page
(Example 2)
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 85

Programming the Exerciser Programming the Exerciser as a Master Device
Structure of Programmed Pages The first line of a programmed page is used as an entry point. The last
line of the page must contain an “end of page” information (EOP) instead
of block transfer properties. The lines after EOP cannot be programmed.

For example, Page 1 contains 3 lines with block transfer properties and
one EOP line. The remaining lines of this page must be left blank.
Programming can be continued on page 2 only.

Concatenated Pages If more than 17 blocks are to be transferred, you can write these lines by
crossing the border to the next page. The next page is then concatenated,
and you lose one entry point.

Following the example, Pages 2 and 3 are concatenated pages and
contain 19 blocks and 1 EOP line. Because the size of page 2 is exceeded,
page 3 is no longer available for direct access except for initialization. If
page 3 is accessed for initialization, page 2 will also be initialized.

The remaining lines (3 to 16) of page 3 must be left blank.

Running the Bock Transfers When a master block page run is started with page 1 of the previous
example, the lines of page 1 will be executed one after the other until the
EOP is found. Then the run will usually stop.

If the master block page run is started with page 2 of the previous
example, the lines of page 2 and 3 would be executed in the same
manner: one after the other until an EOP is found.

A master run started with page 3 would result in an error, as well as any
programming access to a line on page 3 (for example, to change data in a
line on page 3). The entries in page 3 are only available via page 2 using
an offset greater than 16.

For more details in running the transfers, please refer to “Master Run”

on page 103.
86 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Master Device Programming the Exerciser
Functions Overview
The following figure shows the functions used to program the master
block transfer memory.

Programming Steps Programming master block transfers requires the following steps:

1 Initialize a page in the master block transfer memory.

Use BestMasterBlockPageInit.

2 Set the preparation register to default values.

Use BestMasterBlockPropDefaultSet.

3 Change block transfer properties in the preparation register as
needed.

Use BestMasterBlockPropSet.

4 Program a memory line with the content of the preparation register.

Use BestMasterBlockLineProg.

5 Repeat steps 3 and 4 for each block you want to program in the block
page.

6 Conclude the memory page with “end of page” (EOP).

Use BestMasterBlockEndProg.

Repeat these steps for all the block transfer pages you need.

Preparation Register

Page x

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

BestMasterBlockLineProg(page, offset)

BestMasterBlockLineRead(page, offset, *eop)

B
es

tM
as

te
rB

lo
ck

P
ro

pS
et

()

B
es

tM
as

te
rB

lo
ck

P
ro

pG
et

()

B
es

tM
as

te
rB

lo
ck

P
ro

pD
ef

au
ltS

et
()

BestMasterBlockEndProg(page, offset)

BestM
asterBlockPageInit(page)
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 87

Programming the Exerciser Programming the Exerciser as a Master Device
Example

Task Program a read of 40 dwords from memory address 0xb8e60 (video
memory) to the testcard’s internal memory address 0 using the master
attributes in attribute memory page “MyAttrPage”.

For programming an attribute memory page, see “Master Attribute

Memory Programming” on page 89.

Implementation /* Initialize the block page “MyBlockpage” */

err=BestMasterBlockPageInit(handle, MyBlockPage);C(err);

/* Set the preparation register to default values */

err=BestMasterBlockPropDefaultSet(handle);C(err);

/* Write to the preparation register: */

/* the starting bus address for the block transfer */

err=BestMasterBlockPropSet(handle,B_BLK_BUSADDR,0xb8e60);C(err);

err=BestMasterBlockPropSet(handle, \

B_BLK_INTADDR, \

0x00);C(err);

/* the read command */

err=BestMasterBlockPropSet(handle, \

B_BLK_BUSCMD, \

B_CMD_MEM_READ);C(err);

/* the number of 40 dwords */

err=BestMasterBlockPropSet(handle,B_BLK_NOFDWORDS,40);C(err);

/* the pointer to the master attribute page “MyAttrPage” */

err=BestMasterBlockPropSet(handle,B_BLK_ATTRPAGE,MyAttrPage);C(err);

/* Write the content of the preparation register to memory line 0
*/

err=BestMasterBlockLineProg(handle, MyBlockPage, 0);C(err);

/* Define memory line 1 to EOP */

err=BestMasterBlockEndProg(handle, MyBlockPage,1);C(err);
88 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Master Device Programming the Exerciser
Master Attribute Memory Programming
Memory Contents The master attribute memory contains information on how the blocks

stored in the master block transfer memory should be transferred.

The settings of this memory do not affect the result of the data transfer.
You can repeat transfers with fixed master block transfer settings but
with varying master attributes, and then compare the transferred data
with data stored in the testcard’s internal memory. For example, the
master attributes could be varied by a randomizer.

Basically, programming the master attribute memory is not different
from programming the master block transfer memory. It is also designed
like a table divided into pages. Therefore, it is recommended that you
first read “Master Block Transfer Memory Programming” on page 85.

The following explanations describe the differences between the
memories.

Memory Design The master attribute memory can hold up to 256 lines. It is organized in
64 pages with 4 lines each. Page 0 contains default values and is read-
only.

NOTE For compatibility with older C-API versions, there is also an 8-page by
32-line memory organization. This is also the default. To take advantage
of the enhanced number of pages, change the master attribute page size
with BestExerciserGenPropSet and store this as power-up property so
that this setting will be used at every power-up. (This does not affect the
principles described in the following.)

Each line represents one successful bus phase (this is different to the
behavior of the target) and contains both address and data attributes. If a
phase was unsuccessful (for example due to target retries), it will be
repeated using the same line until successful completion.

Instead of an “end of page” line—as used in the master block transfer
memory— this information is held in the loop bit. The loop needs to be
set to “0” except in the last line. In this way, it is ensured that the
exerciser cycles through the master attributes and returns to the
beginning.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 89

Programming the Exerciser Programming the Exerciser as a Master Device
Building Loops in the Master
Attribute Memory

The following figure shows how loops are built in the master attribute
memory.

Programming Concatenated Pages The following figure shows how pages with more than 4 lines are to be
programmed in concatenated pages. The figure is also used to explain
how the exerciser works through the master attribute memory:

Page 1 contains 3 entries with master attributes. It is referred by the
master block transfer property “Attribute Page” with value 1. The
exerciser works through the lines until it finds the row with a loop bit set
to “1”, and then restarts the page with the next phase. In this way it
continues until the number of dwords specified in the master block
transfer properties has been transferred, or the transactions must end
due to other circumstances.

Line 3 in page 1 can be left on its default values. It is out of the loop and
will not be executed.

Pages 2 and 3 are concatenated pages and contain 7 lines with master
attributes, which are worked through by the exerciser when it refers
page 2. A reference to page 3 would result in an error (except for
initialization). Line 3 of page 3 can again be left as it is, because it is out
of the loop and will not be executed.

NOTE There is no need to program an extra end of page identifier. The pages’
ends are identified by the loop bit.

Line Content Loop

x Attribute Set 0 0

x+1 Attribute Set 1 0

x+2 Attribute Set 2 1

x+3 1

Loop Bits

0

1

2

3

Page 1 0

0

1

1

0

1

2

3

Page 2 0

0

0

0

0

1

2

3

Page 3 0

0

1

1

90 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Master Device Programming the Exerciser
Working through the Memory The following figure shows how the attribute memory is worked through
with each bus phase:

The figure shows three transfers, each one consisting of one address
phase and several data phases. There is one column for the attributes for
address phases, and another column for the attributes for data phases.

The attributes for one transfer must be programmed into consecutive
lines. There is one line for each data phase. In each line

• the first column holds the address phase attributes (the same
attributes for each line belonging to one transfer),

• the second column holds the data phase attributes for one data phase
(different attributes for different data phases).

Normally only the address phase attributes in the first line for a transfer
are used, those in the following lines are ignored. If, however, the master
must continue with an address phase (for example, after a target retry
that occurred within a transaction), it will use the address phase
attributes from the current line.

To achieve a deterministic attribute behavior of the master, each block
transfer must start with the beginning of a master attribute page. This
can be controlled with transaction property B_BLK_CONTATTR. See
“b_blkproptype” in the C-API/PPR Reference.

1
2
3 A4
4
5
6
7 A8
8

D2
D3
D4
D5
D6
D7
D8
D9

0 A1 D1

Attribute Memory Line

Address Phase Attributes Data Phase Attributes

A1 D1 D2 D3 A4 D4 D5 D6 D7 A8 D8 D9

1. Transfer 2. Transfer 3. Transfer

1. Transfer

2. Transfer

3. Transfer
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 91

Programming the Exerciser Programming the Exerciser as a Master Device
Master Attributes
This memory contains all properties of a bus phase during a transfer,
such as how many master waits are to be inserted into a data phase or
whether a parity error should be signaled during an address phase and so
forth.

A master attribute memory line covers all types of master attributes:

• address phase attributes

• data phase attributes

• control attributes

The next memory line is selected after each successful data phase. The
address phase attributes of a line are ignored during a data phase.

Address Phase Attributes The exerciser uses the address phase attributes only during an address
phase of a new transaction. Otherwise the address phase attributes are
ignored. You can find all address phase attributes with their detailed
descriptions in “Address Phase Attributes (Master)” in the
Agilent E2925B Opt. 320 C-API/PPR Reference.

Data Phase Attributes The exerciser uses the data phase attributes only during a data phase of a
transaction. Otherwise the attributes are ignored. You can find all
address phase attributes with their detailed descriptions in “Data Phase

Attributes (Master)” in the Agilent E2925B Opt. 320 C-API/PPR

Reference.

Control Attributes The control attributes are used to determine how the exerciser works
through the master attribute memory. The control attributes are valid for
data and address attributes. You can find all address phase attributes
with their detailed descriptions in “Control Attributes (Master)” in the
Agilent E2925B Opt. 320 C-API/PPR Reference.
92 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Master Device Programming the Exerciser
Functions Overview
The following figure shows the C functions used when programming
master attribute pages:

Programming Steps Programming master attributes requires the following steps:

1 Initialize a page in the master attribute memory.

Use BestMasterAttrPageInit.

2 Set the preparation register to default values.

Use BestMasterAttrPropDefaultSet.

3 Change attributes in the preparation register as needed.

Use BestMasterAttrPropSet.

4 Program a memory line with the content of the preparation register.

Use BestMasterAttrLineProg.

5 Repeat steps 3 and 4 for each line you want to program in the attribute
page.

Repeat these steps for all the attribute pages you need.

Register

B
es

tM
as

te
rA

ttr
Pr

op
Se

t()

B
es

tM
as

te
rA

ttr
Pr

op
G

et
()

B
es

tM
as

te
rA

ttr
Pr

op
D

ef
au

ltS
et

()

Page x

0
1
2
3

BestMasterAttrLineProg(page, offset) BestMasterAttrLineRead(page, offset)

BestM
asterAttrPageInit(page)
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 93

Programming the Exerciser Programming the Exerciser as a Master Device
Example

Implementation The following lines program 3 attribute phases with an increasing
number of wait states:

err=BestMasterAttrPageInit(handle,MyAttrPage);C(err);
err=BestMasterAttrPropDefaultSet(handle);C(err);

/* First Address or Data Phase */
err=BestMasterAttrPropSet(handle,B_M_WAITS,1);C(err);
err=BestMasterAttrLineProg(handle, MyAttrPage, 0);C(err);

/* Second Address or Data Phase */
err=BestMasterAttrPropSet(handle,B_M_WAITS,3);C(err);
err=BestMasterAttrLineProg(handle, MyAttrPage, 1);C(err);

/* Third Address or Data Phase, and goto first */
err=BestMasterAttrPropSet(handle,B_M_WAITS,5);C(err);
err=BestMasterAttrPropSet(handle,B_M_DOLOOP,1);C(err);
err=BestMasterAttrLineProg(handle, MyAttrPage, 2);C(err);
94 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Master Device Programming the Exerciser
Master Attribute Group Programming
To achieve more sophisticated randomization opportunities, the master
attributes are divided into groups, which can be varied against each
other. For this purpose, the C-API provides an own function set
controlling the attributes and the loop bit per group (see “Functions

Overview” on page 98).

Attribute Groups The following table shows which attribute is assigned to which group:

This assignment is fixed and cannot be programmed or otherwise changed.

Group Address Phase Attributes

MA0 Delay (Exerciser Idle)

MA1 Try “Fast Back-to-Back”, Steps

MA2 Lock, 64-Bit Request, Release Request

MA3 Resume Delay

MA4 Wrong Parity Signalling, Parity and System Errors

Group Data Phase Attributes

MD0 Waits

MD1 Release Request, Parity and System Errors

MD2 Wrong Parity Signalling, Marker

Group Control Attributes

ML Last, Repeat
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 95

Programming the Exerciser Programming the Exerciser as a Master Device
Composing a Master Attribute Page A master attribute page can be composed of particular group pages of
different sizes. The following figure shows an example:

The figure shows four groups of page x:

• The first group is address phase attribute group 0.

• The second group is address phase attribute group 1.

• The third group is address phase attribute group 2.

• The fourth group is address phase attribute group 3.

In the figure, the remaining groups are skipped for clearness.

The preset page size of 4 lines is exceeded by all groups except the first
one. The fourth group exceeds 8 lines. Therefore, the pages “x+1” and
“x+2” are concatenated and also part of page x.

The fourth group provides the most lines—11—and thus determines the
overall page size of page x. The next available page is page x+3.

GroupLoopBits

0

1

2

3

0

0

0

0

AddressPhase
Attributes, Group1

0

0

0

0

0

0

0

0

... further groups ...

0

1

2

3

0

0

1

1

0

0

0

0

1

1

1

1

Page x

Page x+1

1

1

1

1

0

0

1

1

1

1

1

1

Page x+2

AddressPhase
Attributes, Group0

AddressPhase
Attributes, Group2

AddressPhase
Attributes, Group3

1. Group 2. Group 3. Group 4. Group

0

1

2

3

0

0

1

1

1

1

1

1

1

1

1

1

96 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Master Device Programming the Exerciser
When the exerciser calls page x, the attributes of the groups are cycled
through independently per transaction phase. This means:

• The first three phases use lines 0 to 2 of page x over all groups.

• Phase four uses line 3 of the second, third and fourth group—but line 0
of the first group: this group restarts at its page begin.

• The third group restarts in the sixth phase. At this moment, the first
group will have cycled through the second time and is “standing” on
line 2.

• The second group restarts in phase eight. At this moment, the first
group is in line 1 and the third group is in line 2.

• The fourth group restarts in phase 12. At this moment, the first group
is in line 2, the second is in line 4, the third is in line 1.

NOTE The group page sizes should always be prime numbers and should
always differ to vary the attributes of the groups against each other.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 97

Programming the Exerciser Programming the Exerciser as a Master Device
Functions Overview

NOTE Within a page, the master attribute group functions are not allowed to be
mixed with the non-group functions.

Programming Steps Programming master attribute groups requires the following steps:

1 Initialize a master attribute page. The page will be identified by its
number.
Use BestMasterAttrPageInit.

2 Set the preparation register to default values.
Use BestMasterAttrPropDefaultSet.

3 Change attributes in the preparation register as needed for one group.
Use BestMasterAttrPropSet.

Register

B
es

tM
as

te
rA

ttr
Pr

op
Se

t()

B
es

tM
as

te
rA

ttr
Pr

op
G

et
()

B
es

tM
as

te
rA

ttr
Pr

op
D

ef
au

ltS
et

()

Page x, Groupy

0
1
2
3

BestM
asterAttrPageInit(page)

BestMasterAttrGroupLineProg(group, page, offset) BestMasterAttrGroupLineRead(group, page, offset)
98 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Master Device Programming the Exerciser
4 Program an attribute memory group line with the content of the
preparation register.
Use BestMasterAttrGroupLineProg.

5 Repeat steps 3 and 4 for all groups you want to program in one line.

6 Repeat steps 3, 4 and 5 for each line (address/data phase) you want to
program in the attribute page.

For each line within the group, leave the loop bit at 0, but in the last
line of the group set this bit to 1. Use attribute B_M_LOOP.

7 Repeat these steps for all the attribute pages you need.

8 Select the page to be used (per session).
Use BestMasterAttrPageSelect.

Example

 Task Program the following master attribute group pages:

GroupLoopBits

0

1

2

3

0

1

1

1

0

1

2

3

1

1

1

1

Page 1

Page 2

1

1

1

1

Page 3

1. Group 2. Group

0

1

2

3

0

0

1

1

1

1

1

1

1

1

1

1

ParityError

SystemError

Data Phase
Attributes
GroupMD0

Data Phase
Attributes

GroupMD1

Waits=1

Waits=3

Waits=5
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 99

Programming the Exerciser Programming the Exerciser as a Master Device
Implemention pg_num=1;

offset=0;

/* Initialize attribute page 1. */
err = BestMasterAttrPageInit(handle, 0x01); C(err);

/* Set the preparation register to default values. */
err = BestMasterAttrPropDefaultSet(handle); C(err);

/* Set the attributes for line 0 for group MD0 (master data0) in
the preparation register. */
err = BestMasterAttrPropSet(handle, B_M_WAITS, 0); C(err);

/* Program the attribute group MD0 to set waits in line 0 of the
attribute memory. */
err = BestMasterAttrGroupLineProg(handle, B_MATTR_GRP_MD0, pg_num,
offset); C(err);

/* Set the attributes for line 0 for group MD1 (master data1) in
the preparation register. */
err = BestMasterAttrPropSet(handle, B_M_DOLOOP, 0); C(err);
err = BestMasterAttrPropSet(handle, B_M_DSERR, 1);

/* Program the attribute group MD1 (master data1) to set a system
error in line 0 of the attribute memory. */
err = BestMasterAttrGroupLineProg(handle, B_MATTR_GRP_MD1, pg_num,
offset); C(err);

offset++;

/* Set the attributes for line 1 for group MD0 (master data0) in
the preparation register. */
err = BestMasterAttrPropSet(handle, B_M_WAITS, 3); C(err);

/* Program the attribute group MD0 (master data0) to set waits in
line 1 of the attribute memory. */

err = BestMasterAttrGroupLineProg(handle, B_MATTR_GRP_MD0, pg_num,
offset); C(err);

/* Set the attributes for line 1 for group MD1 (master data1) in
the preparation register. */

err = BestMasterAttrPropSet(handle, B_M_DOLOOP, 0); C(err);
err = BestMasterAttrPropSet(handle, B_M_DPERR, 1);

// Program the attribute group MD1 (master data1) to set a parity
error in line 1 of the attribute memory. */

err = BestMasterAttrGroupLineProg(handle, B_MATTR_GRP_MD1, pg_num,
offset); C(err);

offset++;
100 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Master Device Programming the Exerciser
/* Set the attributes for line 2 for group MD0 (master data0) in
the preparation register. (Set the loop bit for group TD0). */
err = BestMasterAttrPropSet(handle, B_M_WAITS, 5); C(err);
err = BestMasterAttrPropSet(handle, B_M_DOLOOP, 1); C(err);

/* Program the attribute group TD0 (master data0) to set waits in
line 2 of the attribute memory. */
err = BestMasterAttrGroupLineProg(handle, B_MATTR_GRP_MD0, pg_num,
offset); C(err);

/* Select this attribute page to be used. */

err = BestMasterAttrPageSelect(handle, 0x01); C(err);

Byte Enable Memory Programming
Memory Content The byte enable memory contains the information on which byte enables

are to be set in a data phase. This can decrease the number of dwords to
be transferred. The exerciser will consider a dword as exercised, even
though it has been “masked” out due to byte enable setting.

Memory Design The byte enable memory holds up to 256 lines of 8-bit-values. Of these,
240 are freely programmable. The first 16 lines are fixed, their upper
and lower 4-bit values hold the line numbers (for compatibility reasons).
The following table shows how the byte enable memory is designed:

NOTE The compare unit (see “Data Memory and Compare Unit

Programming” on page 142) also considers byte enable settings during
comparison. Therefore, bytes that are not transferred due to byte enable
settings will not be compared.

Line Upper 4 bit Lower 4 bit Values are

0

1

2

...

13

14

15

0\h

1\h

2\h

...

D\h

E\h

F\h

0\h

1\h

2\h

...

D\h

E\h

F\h

fixed

16 ... 256 ... programmable
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 101

Programming the Exerciser Programming the Exerciser as a Master Device
The “Byte Enable” is a master block transfer property and points to a line
in the byte enable memory. Furthermore, the byte enables can per
transaction be controlled in the following ways (controlled by the master
block property “Variable Byte Enable”):

• Fixed byte enables

Each phase of the transaction uses the same byte enable setting, as
specified in the master block transfer properties.

• Variable byte enables

The byte enables vary with each data phase. The sequence starts with
the byte enable pointed to by the byte enable pointer in the master
block transfer properties. It then works through the lines of the byte
enable memory. Variable byte enables can only be used with blocks
with less than or equal 240 transfers.

This—pointer and variable byte enable on/off—is summarized by the
term “Byte Enable Control” in “Master Block Transfer Memory

Programming” on page 85.

Functions Overview
The following figure shows the functions used to program the byte
enable memory.

The byte enables are not programmed using a preparation register. The
byte enable memory is simply programmed by …Prog() and …Read()
functions, so that no further description is needed.

B
es

tM
as

te
rB

yt
eE

na
bl

eR
ea

d(
)

B
es

tM
as

te
rB

yt
eE

na
bl

eP
ro

g(
)

Byte Enable Memory
containsbyteenable settingsper data phase

Lines0to15: FixByteEnable Values (0to 15)

Lines16to 255: ProgrammableByte EnableValues
102 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Master Device Programming the Exerciser
Master Run
For a master run, the memories need to be programmed according to
your requirements. When programming is finished, the exerciser can
start a master run.

Two Ways for a Master Run There are two ways to start a master run:

• Block Page Run

The run is started with a master block transfer memory page. The lines
of the page are worked through until the end of page (EOP) is found.

• Block Run

Only one block is executed. The run ends when the block is
completely worked through or when the run must be aborted.

Steps for Performing a Master Run Basically the exerciser performs a master run as follows:

1. If a start condition is specified by the corresponding block transfer
property, the exerciser waits until the start condition is met.

2. The exerciser requests the bus from the arbiter and waits for the
grant.

3. After the bus is granted, the exerciser performs the transactions,
which is controlled by the master state machine:

– The exerciser picks the PCI bus address from the current master
block transfer properties and drives it onto the bus.

– The exerciser waits for the target’s ready signal and then starts the
transfer.

– The exerciser performs the transfer phase by phase, stepping
through and using the attributes stored in the master attribute
memory.

4. The transaction is complete after the last dword is transferred, as
specified in the master block transfer property “Number of Dwords”.

5. A block run is then finished, unless the “Repeat” property has been
set. In this case, the block would be repeated until it is externally
stopped.

6. A block page run would call the next block and proceed in the same
way as with the first block until the end of page is found. If the
“Repeat” property has been set, the block page will be repeated until
it is externally stopped.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 103

Programming the Exerciser Programming the Exerciser as a Master Device
Functions Overview
The Agilent E2925B testcard’s programming interface provides functions
for a master run. The available functions and their usage is shown by
describing the programming steps.

Programming Steps Programming the master run requires the following steps:

1 Start the transactions on the bus.

Use BestMasterBlockPageRun.

NOTE To run only one block specified by the current settings in the block page
preparation register, use BestMasterBlockRun. This is useful, for
example, for testing purposes.

The functions returns immediately after initiating the run.

2 Detect the end of the run by polling the status register.

Use BestStatusRegGet.

NOTE If the master does not stop on its own, it can be stopped by
BestMasterStop.

Example

Task Run a block page in the master block transfer memory completely.

Implementation /* Running block page 1 */
BestMasterBlockPageRun(handle,1);

/* Polling the status register to detect the end of the run */
do

{
err=BestStatusRegGet(handle, &statusreg); C(err);
}

while(statusreg & 0x01);
104 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Target Device Programming the Exerciser
Programming the Exerciser as a
Target Device

To program the testcard’s exerciser as a target device means
programming the testcard to react to transactions initiated from a master
device. This test can be used to test the functionality of a master device
on the bus.

Programming the target needs the following steps:

• The generic target properties must be set.

• The target decoder must be set up.

• The configuration space must be modified.

• The protocol attributes must be programmed.

• The settings must be stored as power-up defaults.

Target Operation
In contrast to the master, a target cannot perform a “target run” as it has
a passive behavior. After setting up and enabling the decoders and base
address registers, the exerciser is able to react to accesses of master
devices.

However, before running a test with the current decoder settings, the
system under test and the testcard can first be switched off and on to test
the start-up behavior during the configuration phase.

In a system with BIOS, the configuration phase is performed with the
following steps:

1. When starting up, the testcard uses the programmed power-up

properties. They determine the behavior of the decoders, for
example, how to react on configuration access of the BIOS.

2. To scan for PCI topology and for connected PCI devices, the BIOS
systematically asserts IDSEL lines of all slots within the system. If
the configuration decoder of the exerciser is programmed to react on
its IDSEL, it will assert DEVSEL# and thus signal to the BIOS that it is
present.

3. The BIOS writes and reads to and from the configuration space to
program the testcard, so that it can react to the correct memory and
I/O requests.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 105

Programming the Exerciser Programming the Exerciser as a Target Device
4. After configuration, the BIOS enables the programmed decoders by
setting the enable bits in the configuration space.

However, during configuration the exerciser can react to IDSEL a
multiple number of times, and it can also react to IDSELs that are
directed to other devices, and thus pretend to be other devices.

NOTE This allows emulation of bridges, bus topologies, multiple devices, and
multifunction devices.

To do this, multiple standard decoders of the testcard must be set up
with “config” behavior and be connected to different internal resources
(for example, different partitions of data memory). The resources must
be set up in such a way that they emulate the different configuration
spaces and control the testcard’s behavior when the testcard pretends to
be another device.

Regardless of whether the exerciser emulates one or multiple devices,
and whether the configuration space(s) are programmed by BIOS or by a
program running on the testcard, after the configuration phase, the
exerciser will claim memory and I/O transactions directed to the
address ranges entered in its configuration space.

During such a transaction, the exerciser proceeds as follows:

1. It asserts DEVSEL# to signal to the requesting master that it claims
the transaction, and analyzes the transaction for a command and
address within its range.

2. According to the direction given by the command, it

– either drives data taken from the connected internal resource onto
the PCI bus

– or reads data from the PCI bus and directs them to the connected
internal resource.

If the internal resource is the data memory or compare unit, the
exerciser can use the target attributes stored in the target attribute
memory.

3. The master will signal to the target when the transaction has been
completed. The exerciser deasserts DEVSEL# and turns to idle state
until the next transaction occurs.

If the testcard is plugged into a system with BIOS, settings such as
decoder base addresses and size should not be changed while the system
is running. Therefore, the C-API provides functions to store decoder
settings as power-up defaults (refer to “Power-Up and Reset Control” on

page 37.)
106 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Target Device Programming the Exerciser
Programming Generic Target Properties
The generic target properties determine the general target behavior of
the testcard. They are used to:

• Direct the testcard to use the attributes as specified in the attribute
memory for transactions.

• Disable all memory decoders during and after programming to ensure
that they do not decode accesses from an external source (the BIOS
enables them after configuration during start up).

The Agilent E2925B testcard allows you to program the following generic
properties:

• Run Mode

Transfers to and from data memory can be performed with protocol
attributes varying from phase to phase. The protocol attributes to be
applied per bus phase are stored in the target attribute memory in one
line per phase. The lines are organized in pages.

The run mode property determines whether the target restarts with
the first line of the attribute memory page with each transfer, or
whether it always continues with the next line.

• Enabling/disabling Expansion ROM decoder, Memory decoder,

and I/O decoder

These properties enable or disable decoders. They are used to switch
the decoders on or off, and set the corresponding enable/disable bit in
the configuration space of the testcard. This prevents the BIOS or
other masters from accessing testcard resources and decoders when
they are programmed by the control software.

The decoders can be enabled by the BIOS as soon as the configuration
phase has finished, or—in a testing environment without BIOS—by
means of the C-API.

• Fast Back-to-Back Capability

This property enables or disables the testcard’s capability to perform
Fast Back-to-Back cycles. It sets the corresponding enable/disable bit
in the command register of configuration space of the testcard.

For more information about the generic target properties, refer to
“b_targetgenproptype” in the Agilent E2925B Opt. 320 C-API/PPR

Reference.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 107

Programming the Exerciser Programming the Exerciser as a Target Device
Functions Overview
The following figure shows the functions used to program the generic
target properties memory.

The generic master properties are not programmed using a preparation
register. The generic master property memory is simply programmed by
…Set() and …Get() functions, so that no further description is needed.

Example

 Task Program the target to continue always with the next line of the attribute
memory page with each transfer and enable the memory decoder.

Implementation err=BestTargetGenPropSet(handle, \
B_TGEN_RUNMODE, \
B_RUNMODE_SEQUENTIAL);C(err);

err=BestTargetGenPropSet(handle, \
B_TGEN_MEMSPACE, 0);C(err);

Generic Target Property Memory

B
es

tT
ar

ge
tG

en
Pr

op
Se

t()

B
es

tT
ar

ge
tG

en
Pr

op
D

ef
au

ltS
et

()

B
es

tT
ar

ge
tG

en
Pr

op
G

et
()
108 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Target Device Programming the Exerciser
Programming the Target Decoder
Properties Memory

Memory Contents The target decoder properties memory contains information about the
decoders. There is one memory line space per decoder for all target
decoder properties, however, not all properties are used by each decode.

Decoders of the Testcard
The Agilent E2925B testcard provides the following decoder:

• 6 standard decoders

• Expansion ROM decoder

• Configuration decoder

• Full configuration decoder (type 1 configuration decoder)

• Subtractive decoder

Because full configuration decoder and subtractive decoder can only be
controlled via the C-API, they are described in the following. For more
information about the remaining decoders, refer to “Target Decoder

Properties” in the Agilent E2925B Opt. 320 PCI Exerciser User’s Guide.

Full configuration decoder Type 1 configuration cycles are used to
access the configuration spaces of PCI-to-PCI bridges.

The full configuration decoder behaves like the configuration decoder,
and additionally reacts to type 1 configuration cycles that access a
subordinate bus. A type 1 configuration cycle is recognized by
AD[1:0]=01 (whereas type 0 cycles use AD[1:0]=00).

The transaction is claimed if the bus number accompanying the
transaction is equal to or lies between the bus numbers of the primary
and the secondary bus. The bus number is taken from AD[23:16].

– The primary bus is the first subordinate bus directly connected to
the bridge’s “downward” interface.

– The secondary bus is the subordinate bus with the highest bus number.

Subtractive Decoder The subtractive decoder claims all
transactions that are not claimed by another device. This is the behavior
of ISA bridges.

CAUTION Do not use the testcard with subtractive decoder if an ISA bridge resides
on the bus because hardware might be destroyed.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 109

Programming the Exerciser Programming the Exerciser as a Target Device
Priorities and Parameters
A transaction is allowed to be decoded by one decoder only. Hardware
damage would be the result otherwise. However, the decoder of the
testcard can be set up with overlapping memory ranges. The decoders of
the testcard, therefore, provide priorities. These priorities regulate which
decoder claims a transaction that is in the range of several decoders.

The following table shows the target decoder properties to be used with
each decoder and the priority of each decoder (1 is the highest priority).

Prio. Decoder Properties

1 Fast Configuration Decoder Configuration Decoder properties and
property Speed.

Refer to “Target Decoder Properties” in the
Agilent E2925B Opt. 300 Exerciser User’s
Guide.

2 Fast I/O Decoder
(Standard Decoder 1 – 6)

Standard Decoders 1 – 6 properties and
property Speed.

Refer to “Target Decoder Properties” in the
Agilent E2925B Opt. 300 Exerciser User’s
Guide.

3 Fast Memory Decoder
(Standard Decoder 1 – 6)

4 Expansion ROM Decoder Base Address, Size
Speed (except fast)
Resource, Internal Address, Size

5 Standard Decoder 6 Behavior
Base Address, Size, Mask
Base Decoder (if “Behavior” = overlay)
Commands
Dual Address Cycle (DAC)
Initialization Device Select (IDSEL)
Location
Prefetchable
Resource, Internal Address, Res. Size
Speed

6 Standard Decoder 5

7 Standard Decoder 4

8 Standard Decoder 3

9 Standard Decoder 2

10 Standard Decoder 1

11 Configuration Decoder Base Address, Mask
Resource, Internal Address, Size
Speed

12 Full Configuration Decoder Base Address, Mask
Initialization Device Select (IDSEL)
Bus Numbers
Speed (except fast)
Resource, Internal Address, Res. Size

13 Subtractive Decoder Speed (all)
Resource, Internal Address, Res. Size

Commands
Dual Address Cycle (DAC)

Initialization Device Select (IDSEL)
110 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Target Device Programming the Exerciser
Decoder Properties
The target decoder properties determine the decoder behavior in all
respects. In the following description the properties are grouped
according to their function. The figure below gives an overview:

• Decoding Properties

These properties concern the decoding process itself (basic
properties), such as base addresses, decoded commands, decoder
behavior, and so forth.

• Info Properties

These properties describe the decoded address range: the type
(memory or I/O), location, prefetchability, and so forth.

• Resource Properties

These properties determine the resource connected to the decoder.

PCI Bus

Resource

Decoder

Configuration
Space

Base Address
Registers

Resource
Properties

Info Properties

Decoding
Properties
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 111

Programming the Exerciser Programming the Exerciser as a Target Device
Decoding Properties The following properties determine the decoding behavior of the
decoders:

• Behavior

This property defines the behavior of a standard decoder: normal,
overlay, config, or custom, as described in “Decoder Behavior(s)” on

page 118.

The setting of the behavior property can disable or limit the other
decoding properties. The way it influences which decoding property is
shown in the following table:

Decoding
Properties Normal Behavior Overlay Behavior Configuration Behavior Custom Behavior

Base Address programmable programmable within
Base Decoder Range

programmable
(low address only)

programmable

Mask ignored
programmable by “Size”

ignored
programmable by “Size”

programmable
(low mask only)

programmable

Size programmable programmable within
Base Decoder Range

ignored
(programmable by
Mask)

ignored
(programmable by
Mask)

Base Decoder ignored Base Decoder Identifier ignored ignored

Location programmable ignored
(equals Base Decoder)

ignored
(derived from base
address)

ignored
(derived from base
address)

Prefetch programmable ignored
(equals Base Decoder)

ignored
(derived from base
address)

ignored
(derived from base
address)

Speed programmable ignored
(equals Base Decoder)

programmable programmable

Command ignored
derived from Location

programmable:
Subset of Base Decoder
Commands

programmable:
Config Read/
Config Write

programmable

Dual Address Cycle ignored
derived from Location

ignored
(equals Base Decoder)

off programmable

IDSEL ignored ignored
(equals Base Decoder)

programmable programmable
112 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Target Device Programming the Exerciser
• Mask, Size, Base Address

The address range to be decoded is specified with these properties.
They refer to the base address register entry of the configuration
space.

The base address property specifies the base address of the range, the
size of the address range is specified by either size or mask
(depending on the setting of the “behavior” property).

– Mask and Base Address Register

The Mask property sets the Mask Register, which specifies which
bits of the Base Address Register are “read-only” or which are
“read-/writeable”. The “read-/writeable” bits are used by the BIOS to
determine the memory size of a PCI device and to enter the base
address during configuration.

– Size

The Size property specifies the size of the required memory. This is
for convenience and is intended to be used for standard decoders
with “normal” behavior.

Size is an integer. It is the exponent of a value with the base 2
(actual size = 2size). For example: when size is 20, the actual size of
the memory is 220 (1 MB). A value of 0 switches the decoder off.

The memory size will be recalculated internally into a mask value:
the size value points to a bit in the mask register. This bit and all the
higher bits of the mask register are set to 1 (and are therefore “read-
/writeable” in the base address register).

Example:

The base address is FBEA 0000\h. To decode all addresses up to
FBEA FFFF\h, set either size to 20 (decimal) or mask to FFFE 0000\h.

F 0000EFF

F 0000AEB

Mask Register

Base Address Register

Base address of the
decoded address range

Sets the bits of the Base
Address Register to be
read-/writeable or not.

0 = read only
1 = read-/writeable

Size
20 Points to the lowest

"read-/writeable" bit
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 113

Programming the Exerciser Programming the Exerciser as a Target Device
CAUTION Programming overlapping address ranges to different devices may
cause hardware damage!

The decoders of the testcard can be set up with overlapping address
ranges, however, decoder priorities prevent the testcard from being
damaged.

The following figure shows, as an example, the circuits for the bits 4 to
6 of address lines, the base address register setting and the mask
register setting, when logically linked for decoding.

When decoding, the decoder compares the settings of address line,
base address register and mask as shown in the figure. If the
comparisons return “true” for all bits, the transaction will be claimed
(if IDSEL and the bus command match as well).

This procedure is basically the same for each type of decoder.
However, during configuration cycles, the signals on the address lines
and the bits in the mask register do not transfer address information.
For information on the meaning of the address lines during
configuration cycles, please refer to the PCI Specification.

AD[4]

Base[4]

Mask[4]

AD[5]

Base[5]

Mask[5]

AD[6]

Base[6]

Mask[6]

Claim yes/no

AND

= XOR

= OR
114 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Target Device Programming the Exerciser
• Base Decoder for Overlay Behavior

This property points to the base decoder and is used only if the
decoder behavior is “overlay”. All parameters from the base decoder
are also used for the overlay decoder, however you can specify a
subset of commands and/or a smaller address range, and a different
resource.

Refer to “Decoder Properties” on page 111.

• Commands

With this property, PCI commands can be excluded from decoding.
This makes it possible, for example, to set up a decoder just to decode
reads.

Which commands are available depends on the decoder type and
behavior. For example, a configuration decoder with normal behavior
will not decode memory commands.

• Dual Address Cycle (DAC)

This property enables 64-bit capability to the decoder. This is only
applicable to standard decoders 1, 3 and 5. The referring neighbor
decoder is then also used for 64-bit decoding. For example, decoders 1
and 2 decode a complete 64-bit address.

The subtractive decoder can be set to decode both, 32- and 64-bit
addresses.

• IDSEL (Initialization Device Select)

The IDSEL signal controls whether or not a configuration transaction
is claimed. IDSEL is set during a configuration cycle by the master
(usually the host bridge) to address the target with the configuration
space it wants to access.

Using this property, the full configuration decoder and the subtractive
decoder of the testcard can be set up to decode configuration
transactions that are not addressed to it. The decoder can be set up to
claim

– all configuration transactions (independent of the IDSEL signal)

– only configuration transactions coming with IDSEL

– only configuration transactions coming without IDSEL

• Bus Numbers for Type 1 Configuration Cycles

For type 1 configuration cycles, the primary and secondary bus
number is set by these properties. The configuration cycles will be
decoded if the bus number of the bus addressed by the transaction is
in the range spanned by these bus numbers.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 115

Programming the Exerciser Programming the Exerciser as a Target Device
• Speed

This property determines the decode speed (DEVSEL# timing) of the
testcard. The following speeds are available:

– Fast

Memory, I/O and configuration (type 0 only) decoders can decode
fast. Maximum speed, however has the following limitations:

– Protected Fast

This property forces single cycles (alternating address and data
phases) and therefore address range checking during fast decoding,
so that the decoder cannot accept bursts and exceed the upper limit
of its address range anymore.

– Medium and Slow

These properties set the testcard’s DEVSEL# timing and the
referring entries in the configuration space to medium or slow.

– No DEVSEL#

The decoder will not assert DEVSEL# to answer a master’s request,
although a transfer meets its decode address range.

This forces the requesting master to abort after a time because no
device answers its request. If, however, a subtractive decoding
device is connected to the bus, this can still claim the transaction.

- The resource must be the data memory or compare unit.

- For a memory decoder, the decoded address range and size
are limited. Behavior must be “normal” or “config”.

- For an I/O decoder, the decoded address range and size are
limited. Behavior must be “normal” or “config”.

- For a configuration decoder, IDSEL must be asserted. For
decoding, only the bits that represent the function of a
multifunctional device are taken into account (AD[10:8]), but
not the register within the configuration space of that
device’s function (AD[2:7]).

- No address range checking is performed. The decoder can
accept bursts that exceed the upper limit of its address
range.
116 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Target Device Programming the Exerciser
Info Properties The info properties describe the decoded address range. They refer to
the entries in the Base Address Registers in the configuration space
header of the testcard. They can be read there by the BIOS during
configuration cycles. The BIOS must regard the settings when allocating
system memory resources for the testcard.

• Location

Available locations are:

– in 32-bit range

– in 64-bit range

– below 1 MB

– in I/O range

• Prefetchable

This property specifies whether memory is prefetchable and, thus,
whether a master can take advantage of optimized access to the
memory of the target. The property is not available for the I/O range.

Resource Properties The following properties describe the testcard’s internal resource, which
is connected to the decoder.

• Resource

Available resources are:

– Data Memory or Compare Unit

– Configuration Space

– CPU Port

– Static I/O

– Expansion ROM

For an overview of the available resources, refer to “Data Resources”
in the Agilent E2925B Opt. 300 Exerciser User’s Guide.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 117

Programming the Exerciser Programming the Exerciser as a Target Device
• Internal Address and Size

These properties determine the memory range of a (memory)
resource. Using different internal addresses of the testcard allows the
specification of partitions of the internal data memory as resources,
which then can be used by different decoders.

The internal address range does not necessarily need to span the same
size as the address range that the decoder decodes. The internal
memories are cycled through. This allows, for example,

– specification of a size of 1 to simulate the front end of a FIFO
address, as they are often used for I/O

– acceptance of bursts that are longer than the available memory
space

Decoder Behavior(s)
For each Standard Decoder of the testcard, a particular behavior can be
programmed. This allows the testcard to be set up for certain types of
tests. To transfer data using the testcard, you need the following decoder
behavior (which is also the default):

• Normal Behavior

This programs the decoder to behave as specified in the Base Address
Registers. It is intended for PCI-compliant memory and I/O decoding.

• Overlay Behavior

This allows connection of different resources to one address range.

If, for example, you need different internal resources to store data
received from and to be driven onto the PCI bus, you cannot simply
set up two different decoders—because one PCI address (range) can
be decoded by one decoder only. Hardware damage would be the
result otherwise. Therefore, the decoders of the testcard provide
priorities.

NOTE You can use a command subset as well as an address (range) subset.

Instead, you program a base decoder (the “real” decoder) and a
decoder with “overlay behavior”. To the decoder with overlay
behavior, you assign a subset of the commands of the base decoder
and its own resource. The decoder with overlay behavior will then
redirect the data transferred with these commands to/from that
resource.
118 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Target Device Programming the Exerciser
The base address register of a decoder with overlay behavior will
always be set to zero. Base address registers following a base address
register set to zero in the configuration space header will not be
recognized by the BIOS. Therefore, use the lower standard decoders
as base decoders and locate the overlay decoders after them.

The base decoder must be set up to “normal” behavior. You can use
one base decoder with multiple decoders with “overlay” behavior. The
figure below shows an example:

• Config Behavior

This programs the decoder to behave like a PCI-compliant
configuration decoder (type 0 only). For example, if this behavior is
programmed to the six standard decoders, this emulates six devices
reacting on configuration cycles from the host bridge.

• Custom Behavior

This behavior allows the programming of non-PCI-compliant
decoders. You can set the programmable properties of a decoder
according to your testing requirements. Your settings are not checked
for PCI compliance.

Overlay Decoder (Base Decoder 2)

Overlay Decoder (Base Decoder 2)

Overlay Decoder (Base Decoder 1)

Base Address

0000 0000

0000 0000

0000 0000

0000 0000

Base Address

Base Address Register 0 ... 5Standard Decoders 1 ... 6

Base Decoder 1 (normal)

Base Decoder 2 (normal)
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 119

Programming the Exerciser Programming the Exerciser as a Target Device
Functions Overview
The following figure shows the functions used to program the target
decoder properties memory.

Programming Steps Programming Target Decoder Properties requires the following steps:

1 Set the preparation register for a specific decoder to default values.
Use BestTargetDecoderPropDefaultSet.

2 Change decoder properties in the preparation register as needed.
Use BestTargetDecoderPropSet.

3 Program the contents of the preparation register for the specific
decoder to the memory.

Register

B
es

tT
ar

ge
tD

ec
od

er
P

ro
pS

et
()

B
es

tT
ar

ge
tD

ec
od

er
P

ro
pG

et
()

BestTargetDecoderProg(decoder) BestTargetDecoderRead(decoder)

Target Decoder
Properties Memory

Standard Decoder 1 Properties

Standard Decoder 2 Properties

Standard Decoder 3 Properties

Standard Decoder 4 Properties

Expansion ROM Decoder
Properties

Standard Decoder 5 Properties

Standard Decoder 6 Properties

Config Decoder (Type 0)
Properties

Config Decoder (Type 1)
Properties

Subtractive Decoder Properties

B
es

tT
ar

ge
tD

ec
od

er
P

ro
pD

ef
au

ltS
et

()
120 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Target Device Programming the Exerciser
Example

Task Program the testcard to react to BIOS configuration cycles by requesting
a memory area of 16 KByte located in the 32 bit address range.

Proceed as follows:

1 Set up the testcard to decode accesses to this memory using a
32-KByte internal data memory area as follows:

– The data from write accesses gets stored in a lower 16-KByte area.

– The data for read accesses is supplied from the upper 16-KByte
area.

To do this, you need to set up two standard decoders to direct read
and write transfers to different resources: One with normal and one
with overlay behavior.

2 Program the decoder with overlay behavior to decode a command
subset of its base decoder.

Because the decoder with overlay behavior has a higher priority, the
base decoder will only decode those transactions that are not claimed
by the decoder with overlay behavior.

Set up the Standard Decoder 1 3 Set up the Standard Decoder 1 to be the base decoder with:

– Normal behavior

– 16 KByte decoded address range (= 214, therefore size is 14) in 32-
bit space, (non-prefetchable)

– Medium decode speed

– Internal resource 16 KByte data memory, starting with internal
address 0x00

Implementation /* Set up Standard Decoder 1. */
err=BestTargetDecoderPropDefaultSet(handle,
B_DEC_STANDARD_1);C(err);

err=BestTargetDecoderPropSet(handle, B_DEC_BEHAVIOR, NORMAL); C(err);
err=BestTargetDecoderPropSet(handle, B_DEC_SIZE, 14);C(err);
err=BestTargetDecoderPropSet(handle, B_DEC_LOCATION, B_LOC_SPACE32);
C(err);
err=BestTargetDecoderPropSet(handle, B_DEC_PREFETCH, 0);C(err);
err=BestTargetDecoderPropSet(handle, B_DEC_SPEED, MEDIUM);C(err);
err=BestTargetDecoderPropSet(handle, B_DEC_RESOURCE, B_RES_DATA);
C(err);
err=BestTargetDecoderPropSet(handle, B_DEC_RESBASE, 0x0000);C(err);
err=BestTargetDecoderPropSet(handle, B_DEC_RESSIZE, 0x4000);C(err);

/* Program the decoder settings to the memory. */
err=BestTargetDecoderProg(handle, B_DEC_STANDARD_1);C(err);
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 121

Programming the Exerciser Programming the Exerciser as a Target Device
Set up the Standard Decoder 6 The following lines set up the Standard Decoder 6 as a decoder with

overlay behavior:

• behavior is overlay, base decoder is Standard Decoder 1

• read commands are redirected to upper 16 kByte of internal memory

Implementation err=BestTargetDecoderPropDefaultSet(handle, B_DEC_STANDARD_6);
C(err);
err=BestTargetDecoderPropSet(handle, B_DEC_BEHAVIOR, B_BEH_OVERLAY);
C(err);
err=BestTargetDecoderPropSet(handle, B_DEC_OVERLAY,
B_DEC_STANDARD_1); C(err);
err=BestTargetDecoderPropSet(handle, B_DEC_BUSCMD,

\(B_CMDBIT_MEM_READ \
|B_CMDBIT_MEM_READLINE \
|B_CMDBIT_MEM_READMULTIPLE);C(err);

err=BestTargetDecoderPropSet(handle, B_DEC_RESOURCE, B_RES_DATA);
C(err);
err=BestTargetDecoderPropSet(handle, B_DEC_RESBASE, 0x4000);C(err);
err=BestTargetDecoderPropSet(handle, B_DEC_RESSIZE, 0x4000);C(err);

/* Program the decoder settings to the memory. */
err=BestTargetDecoderProg(handle, B_DEC_STANDARD_6);C(err);
122 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Target Device Programming the Exerciser
Target Attribute Memory Programming
Memory Contents The target attribute memory contains protocol level information on how

decoded transactions should be performed.

That means, it contains all properties of a bus phase during a transfer,
such as how many waits are to be inserted into a data phase or whether a
parity error should be signaled during an address phase, and so forth.
The attributes can be used for data transfers to or from the internal data
memory and compare unit. The attribute memory is shared by all
decoders.

The settings of this memory do not affect the result of the data transfer.
You can repeat transfers with fixed target decoder settings but with
varying target attributes, and then compare the transferred data with
data stored in the testcard’s internal memory. For example, the target
attributes could be varied by a randomizer.

A target attribute memory line covers all types of target attributes:

Address Phase Attributes The exerciser uses the address phase attributes only during an address
phase of a transaction. At other transaction phases, the address phase
attributes are ignored. You can find all address phase attributes with
their detailed descriptions in “Address Phase Attributes (Target)” in the
Agilent E2925B Opt. 320 C-API/PPR Reference.

Data Phase Attributes The exerciser uses the data phase attributes only during a data phase of a
transaction. You can find all address phase attributes with their detailed
descriptions in “Data Phase Attributes (Target)” in the Agilent E2925B

Opt. 320 C-API/PPR Reference.

Control Attributes The control attributes are used to determine how the exerciser works
through the lines of target attribute memory. You can find all address
phase attributes with their detailed descriptions in “Control Attributes

(Target)” iin the Agilent E2925B Opt. 320 C-API/PPR Reference.

The next memory line is selected after each data phase, regardless of

whether or not it was successful. The address phase attributes of a
line are ignored during a data phase.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 123

Programming the Exerciser Programming the Exerciser as a Target Device
Memory Design The target attribute memory can hold up to 256 lines. It is organized in
64 pages with 4 lines each. Page 0 contains default values and is read-
only.

NOTE For compatibility with older C-API versions, there is also an 8-page by
32-line memory organization. This is also the default. To take advantage
of the enhanced number of pages, change the target attribute page size
(using BestExerciserGenPropSet) and store this as power-up property so
that this setting will be used at every power-up. (This does not affect the
principles described in the following.)

Each line represents one bus phase, regardless of whether it is

successfully performed or not (this is different than the behavior of
the master), and contains both address and data attributes.

The “end of page” information is held in a loop bit. The loop bit needs to
be set to “0” except in the last memory line. In this way, it is ensured that
the exerciser cycles through the target attributes and returns to the
beginning.

Building Loops in the Target Attribute
Memory

The following figure shows how loops are built in the target attribute
memory.

Line Content Loop

x Attribute Set 0 0

x+1 Attribute Set 1 0

x+2 Attribute Set 2 1

x+3 1
124 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Target Device Programming the Exerciser
Programming Concatenated Pages The following figure shows how pages with more than 4 lines are
programmed in concatenated pages. The figure is also used to explain
how the exerciser works through the target attribute memory.

Page 1 contains 3 entries with target attributes. It is referred with value
1. The exerciser works through the lines until it finds the row with a loop
bit set to 1, and then restarts the page with the next phase. It continues in
this way until the transaction ends.

Line 3 in page 1 can be left on its default values. It is out of the loop and
will not be executed.

Pages 2 and 3 are concatenated pages and contain 7 lines with target
attributes, which are worked through by the exerciser when it refers
page 2. A reference to page 3 would result in an error (except for
initialization). Line 3 of page 3 can again be left as it is, because it is out
of the loop and will not be executed.

Loop Bits

0

1

2

3

Page 1 0

0

1

1

0

1

2

3

Page 2 0

0

0

0

0

1

2

3

Page 3 0

0

1

1

Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 125

Programming the Exerciser Programming the Exerciser as a Target Device
Working through the Memory The following figure shows how the attribute memory is worked through
with each bus phase:

The figure shows three transfers, each one consisting of one address
phase and several data phases. There is one column for the attributes for
address phases, and another column for the attributes for data phases.

The attributes for one transfer must be programmed into consecutive
lines. There is one line for each data phase. In each line

• the first column holds the address phase attributes (the same
attributes for each line belonging to one transfer),

• the second column holds the data phase attributes for one data phase
(different attributes for different data phases).

Normally only the address phase attributes in the first line for a transfer
are used, those in the following lines are ignored. If, however, the master
must continue with an address phase (for example, after a target retry
that occurred within a transaction), the target will use the target address
phase attributes from the current line. Otherwise they are ignored.

To achieve a deterministic attribute behavior of the target, each transfer
beginning with an address phase must start with the beginning of a target
attribute page. See “Run Mode” in “Programming Generic Target

Properties” on page 107.

1
2
3 A4
4
5
6
7 A8
8

D2
D3
D4
D5
D6
D7
D8
D9

0 A1 D1

Attribute Memory Line

Address Phase Attributes Data Phase Attributes

A1 D1 D2 D3 A4 D4 D5 D6 D7 A8 D8 D9

1. Transfer 2. Transfer 3. Transfer

1. Transfer

2. Transfer

3. Transfer
126 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Target Device Programming the Exerciser
Functions Overview
The following figure shows the C functions used when programming
target attribute pages.

Programming Steps Programming target attributes requires the following steps:

1 Initialize a target attribute page. The page will be identified by its
number.
Use BestTargetAttrPageInit.

2 Set the preparation register to default values.
Use BestTargetAttrPropDefaultSet.

3 Change attributes in the preparation register as needed.
Use BestTargetAttrPropSet.

4 Program an attribute memory line with the content of the preparation
register.
Use BestTargetAttrLineProg.

Register

B
es

tT
ar

ge
tA

ttr
P

ro
pS

et
()

B
es

tT
ar

ge
tA

ttr
P

ro
pG

et
()

B
es

tT
ar

ge
tA

ttr
P

ro
pD

ef
au

ltS
et

()

Page x

0

1

2

3

BestTargetAttrPageInit(page)

BestTargetAttrLineProg(page, offset) BestTargetAttrLineRead(page, offset)
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 127

Programming the Exerciser Programming the Exerciser as a Target Device
5 Repeat steps 3 and 4 for each line (address/data phase) you want to
program in the attribute page.

For each line within the loop, leave the loop bit at 0, but in the last line
of the loop set this bit to 1.

6 Repeat these steps for all the attribute pages you need.

7 Select the page to be used (per session).
Use BestTargetAttrPageSelect.

Example

Task Program and select target attribute page 1, define 3 attribute phases with
an increasing number of wait states (3, 5, 7) and a disconnect during the
third data phase.

Implementation /* Target attribute page 1: set protocol behavior. */
err=BestExerciserGenPropSet(handle, B_EXE_ATTRPAGESIZE, 4); C(err);

/* Initialize the attribute page. */
err=BestTargetAttrPageInit(handle, MyAttrPage); C(err);

/* Set the preparation register to default values */
err=BestTargetAttrPropDefaultSet(handle); C(err);

err=BestTargetAttrPropSet(handle,B_T_WAITS,3); C(err);

err=BestTargetAttrLineProg(handle, MyAttrPage, 0); C(err);

err=BestTargetAttrPropSet(handle,B_T_WAITS, 5); C(err);

err=BestTargetAttrLineProg(handle, MyAttrPage, 1); C(err);

err=BestTargetAttrPropSet(handle,B_T_WAITS, 7); C(err);

err=BestTargetAttrPropSet(handle, B_T_TERM, B_TERM_DISCONNECT);
C(err);

err=BestTargetAttrPropSet(handle,B_T_DOLOOP, 1); C(err);

err=BestTargetAttrLineProg(handle, MyAttrPage, 2); C(err);

err=BestTargetAttrPageSelect(handle, MyAttrPage); C(err);
128 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Target Device Programming the Exerciser
Target Attribute Groups Programming
To achieve more sophisticated randomization opportunities, the target
attributes are divided into groups, which can be varied against each
other. For this purpose, the C-API provides an own function set
controlling the attributes and the loop bit per group.

Attribute Groups The following table shows which attribute is assigned to which group:

This assignment is fixed and cannot be programmed or otherwise
changed.

Group Address Phase Attributes

TA0 64-Bit Acknowledge
System Error Signalling

Group Data Phase Attributes

TD0 Waits

TD1 Termination, Parity and System Errors

TD2 Marker

Group Control Attributes

TC Repeat
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 129

Programming the Exerciser Programming the Exerciser as a Target Device
Composing a Target Attribute Page A target attribute page can be composed of particular group pages of
different sizes.

The following figure shows an example:

The figure shows four groups of page x:

• The first group is address phase attribute group 0.

• The second group is address phase attribute group 1.

• The third group is address phase attribute group 2.

• The fourth group is address phase attribute group 3.

In the figure, the remaining groups are skipped for clearness.

The default page size of 4 lines is exceeded by all groups except the first
one. The fourth group exceeds 8 lines. Therefore, pages “x+1” and “x+2”
are concatenated and also part of page x.

The fourth group provides the most lines—11—and thus determines the
overall page size of page x. The next available page is page x+3.

When the exerciser calls page x, the attributes of the groups are cycled
through independently per transaction phase. This means the following:

• The first three phases use lines 0 to 2 of page x over all groups.

• Phase four uses line 3 of the second, third and fourth group—but line 0
of the first group: this group restarts at its page begin.

GroupLoopBits

0

1

2

3

0

0

0

0

AddressPhase
Attributes, Group1

0

0

0

0

0

0

0

0

... further groups ...

0

1

2

3

0

0

1

1

0

0

0

0

1

1

1

1

Page x

Page x+1

1

1

1

1

0

0

1

1

1

1

1

1

Page x+2

AddressPhase
Attributes, Group0

AddressPhase
Attributes, Group2

AddressPhase
Attributes, Group3

1. Group 2. Group 3. Group 4. Group

0

1

2

3

0

0

1

1

1

1

1

1

1

1

1

1

130 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Target Device Programming the Exerciser
• The third group restarts in the sixth phase. At this moment, the first
group will have cycled through the second time and is “standing” on
line 2.

• The second group restarts in phase eight. At this moment, the first
group is in line 1 and the third group is in line 2.

• The fourth group restarts in phase 12. At this moment, the first group
is in line 2, the second is in line 4, the third is in line 1.

NOTE The group page sizes must always be prime numbers and must always
differ to vary the attributes of the groups against each other.

Function Overview

NOTE Within a page, these functions are not allowed to be mixed with the non-
group functions.

The following figure shows the functions used to program target
attribute groups to the memory.

Register

B
es

tT
ar

ge
tA

ttr
P

ro
pS

et
()

B
es

tT
ar

ge
tA

ttr
P

ro
pG

et
()

B
es

tT
ar

ge
tA

ttr
P

ro
pD

ef
au

ltS
et

()

Page x, Group y

0

1

2

3

BestTargetAttrPageInit(page)

BestTargetAttrGroupLineProg(group, page, offset) BestTargetAttrGroupLineRead(group, page, offset)
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 131

Programming the Exerciser Programming the Exerciser as a Target Device
Programming Steps Programming target attributes requires the following steps:

1 Initialize a target attribute page. The page will be identified by its
number.
Use BestTargetAttrPageInit.

2 Set the preparation register to default values.
Use BestTargetAttrPropDefaultSet.

3 Change attributes in the preparation register as needed for one group.
Use BestTargetAttrPropSet.

4 Program an attribute memory group line with the content of the
preparation register.
Use BestTargetAttrGroupLineProg.

5 Repeat steps 3 and 4 for all groups you want to program in one line.

6 Repeat steps 3, 4 and 5 for each line (address/data phase) you want to
program in the attribute page.

For each line within the group, leave the loop bit at 0, but in the last
line of the group set this bit to 1. Use attribute B_T_LOOP.

7 Repeat these steps for all the attribute pages you need.

8 Select the page to be used (per session).
Use BestTargetAttrPageSelect.

Examples

Task Program the following target attribute group pages.

GroupLoopBits

0

1

2

3

0

0

0

0

0

1

2

3

1

1

1

1

Page 1

Page 2

1

1

1

1

Page 3

1. Group 2. Group

0

1

2

3

0

0

1

1

1

1

1

1

1

1

1

1

No Termination

No Termination

No Termination

Retry

Disconnect

Data Phase
Attributes
GroupTD0

Data Phase
Attributes
GroupTD1

Waits=1

Waits=3

Waits=5
132 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Target Device Programming the Exerciser
Implementation pg_num=1;

offset=0;

/* Initialize attribute page 1. */
err = BestTargetAttrPageInit(handle, 0x01); C(err);

/* Set the preparation register to default values. */
err = BestTargetAttrPropDefaultSet(handle); C(err);

/* Set the attributes for line 0 for group TD0 (target data0) in
the preparation register. */
err = BestTargetAttrPropSet(handle, B_T_WAITS, 0); C(err);

/* Program the attribute group TD0 to set waits in line 0 of the
attribute memory. */
err = BestTargetAttrGroupLineProg(handle, B_TATTR_GRP_TD0, pg_num,
offset); C(err);

/* Set the attributes for line 0 for group TD1 (target data1) in
the preparation register. */
err = BestTargetAttrPropSet(handle, B_T_DOLOOP, 0); C(err);
err = BestTargetAttrPropSet(handle, B_T_TERM, B_TERM_NOTERM);

/* Program the attribute group TD1 to set terminations in line 0 of
the attribute memory. */
err = BestTargetAttrGroupLineProg(handle, B_TATTR_GRP_TD1, pg_num,
offset); C(err);

offset++;

/* Set the attributes for line 1 for group TD0 in the preparation
register. */
err = BestTargetAttrPropSet(handle, B_T_WAITS, 3); C(err);

/* Program the attribute group TD0 to set waits in line 1 of the
attribute memory. */

err = BestTargetAttrGroupLineProg(handle, B_TATTR_GRP_TD0, pg_num,
offset); C(err);

/* Set the attributes for line 1 for group TD1 in the preparation
register. */

err = BestTargetAttrPropSet(handle, B_T_TERM, B_TERM_NOTERM);

// Program the attribute group TD1 to set terminations in line 1 of
the attribute memory. */

err = BestTargetAttrGroupLineProg(handle, B_TATTR_GRP_TD1, pg_num,
offset); C(err);

offset++;
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 133

Programming the Exerciser Programming the Exerciser as a Target Device
/* Set the attributes for line 2 for group TD0 in the preparation
register. (Set the loop bit for group TD0). */
err = BestTargetAttrPropSet(handle, B_T_WAITS, 5); C(err);
err = BestTargetAttrPropSet(handle, B_T_DOLOOP, 1); C(err);

/* Program the attribute group TD0 to set waits in line 2 of the
attribute memory. */
err = BestTargetAttrGroupLineProg(handle, B_TATTR_GRP_TD0, pg_num,
offset); C(err);

/* Set the attributes for line 2 for group TD1 in the preparation
register. */

err = BestTargetAttrPropSet(handle, B_T_DOLOOP, 0); C(err);
err = BestTargetAttrPropSet(handle, B_T_TERM, B_TERM_NOTERM); C(err);

/* Program the attribute group TD1 to set terminations for line 2
of the attribute memory. */
err = BestTargetAttrGroupLineProg(handle, B_TATTR_GRP_TD1, pg_num,
offset); C(err);

offset++;

/* Set the attributes for line 3 for group TD1 in the preparation
register. */
err = BestTargetAttrPropSet(handle, B_T_DOLOOP, 0); C(err);
err = BestTargetAttrPropSet(handle, B_T_TERM, B_TERM_RETRY);

/* Program the attribute group TD1 to set terminations in the
attribute memory. */
err = BestTargetAttrGroupLineProg(handle, B_TATTR_GRP_TD1, pg_num,
offset); C(err);

offset ++;

/* Set the attributes for line 2 for group TD0 in the preparation
register. (Set the loop bit for group TD1). */
err = BestTargetAttrPropSet(handle, B_T_DOLOOP, 1); C(err);
err = BestTargetAttrPropSet(handle, B_T_TERM, B_TERM_DISCONNECT);

// Program the attribute group TD1 to set terminations in the
attribute memory. */
err = BestTargetAttrGroupLineProg(handle, B_TATTR_GRP_TD1, pg_num,
offset); C(err);

/* Select this attribute page to be used. */

err = BestTargetAttrPageSelect(handle, 0x01); C(err);
134 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Target Device Programming the Exerciser
Target Run
After adding initialization and control port functions, compile the
program and run it on the host. Then reboot the system under test. The
BIOS will allocate a base address to Standard Decoder 1 and enable it.
After the BIOS configuration phase has been completed, the testcard is
ready to run as specified.

You can now start a program that accesses the programmed memory
space.

NOTE To run the same decoder set up in a system without BIOS configuration,
you would have to specify a base address for Standard Decoder 1 (for
example 0xFCE00000) and you would have to enable it.

To specify the base address, the following line must be added to the lines
setting Standard Decoder 1 properties:

err=BestTargetPropSet(handle, B_DEC_BASEADDR, 0xFCE00000);C(err);

To enable it, add the following lines before storing the settings as power-
up defaults.

err=BestTargetGenPropSet(handle, B_TGEN_MEMIOSPACE, 1);C(err);

It is not necessary to store the settings as power up defaults, unless the
system under test is driven without BIOS and will be switched off before
the test is run. Therefore, functions BestPowerUpPropSet and
BestAllPropStore could be skipped.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 135

Programming the Exerciser Programming the Exerciser as a Target Device
Configuration Space Header Programming
The configuration space header of the testcard enables the testcard to
behave like a standard PCI device with a real configuration space. The
bits in the configuration space header of the testcard can be set to a
certain value and then masked to be read only, read/write and read/clear
for configuration access. The setting of the configuration space header
can be stored as power-up defaults.

Configuration Registers The “default value” and “default mask” column in the tables below
always shows the factory default. These settings can be restored at any
time.

For details of the registers refer to the PCI specification.

Register Default Mask Default Value Notes

Vendor ID 0000 103C

Device ID 0000 2926

Command F900 0280 See “Command Register” on page 137.

Write accesses are handled in software by the
on-board CPU.

Read accesses are handled directly in hardware,
that is transactions are not delayed.

Status 01D7 0000 See “Status Register” on page 139.

Revision ID 0000 0000

Class Code 0000 0000

Cache Line Size FF 00 Any value is accepted. However, the testcard
can decide to replace it by a zero (for example, to
up the register to be PCI-compliant).

The master needs this register to be set to a
value other than zero to generate MWI cycles
with cacheline wrap mode.

The analyzer uses this register to determine the
system’s cacheline size.

The target does not use this information.

Latency Timer FF 00 Used by the master.

Header Type 00 00

BIST 00 00

Base Address Reg-
ister 0... 5

Each bit can be programmed to be writeable.

Used by the target decoders. See “Programming the Exerciser as a Target De-
vice” on page 105.

FFFF F000 0000 0008 BAR 0: Refers to decoder 1, size is preset to 12.

FFFF FFF0 0000 0001 BAR 1: Refers to decoder 2, size is preset to 4,
decoder is preset to decode I/O cycles.

0000 0000 0000 0000 BAR 2 ... 5: Switched off.
136 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Target Device Programming the Exerciser
Command Register The following table describes the bits of the configuration space header
command register. The “Mask” and “Value” and columns contain factory
defaults.

Bits 10 ... 15 are unused. For details, refer to the PCI Specification.

Cardbus CIS Pointer 0000 0000 0000 0000

Subsys. Vendor ID 0000 0000

Subsystem ID 0000 0000

Exp. ROM BAR 0000 0000 0000 0000 Bit 0 enables expansion ROM, the remaining bits
specify its size.

See “Expansion ROM Programming” on page 141
and “Programming the Exerciser as a Target
Device” on page 105.

Reserved 0 0000 0000 0000 0000 No function/Capability Pointer.

Reserved 1 0000 0000 0000 0000 No function.

Interrupt Line FF 00

Interrupt Pin 00 01

Min_Gnt 00 00

Max_Lat 00 00

Register Default Mask Default Value Notes

Bit Mask Value Meaning

0 0 0 I/O Space Control.

Returns, enables, and disables the capability of the testcard to respond
to I/O cycles. Used by the exerciser (target).

It takes 4 clocks until the decoders are enabled or disabled.

1 0 0 Memory Space Control.

Returns, enables, and disables the capability of the testcard to respond
to memory cycles. Used by the exerciser (target).

It takes 4 clocks until the decoders are enabled or disabled.

2 0 0 Bus Master Control.

Returns, enables, and disables the capability of the testcard to be bus
master. Used by the exerciser (master).

3 0 0 Special Cycle Control.

Returns, enables, and disables the capability of the testcard to monitor
special cycles.

It takes 4 clock cycles until the decoders are enabled or disabled.

4 0 0 Memory Write and Invalidate Control.

Returns, enables, and disables the capability of the testcard to generate
MWI cycles. If disabled, normal memory write cycles are used instead

Used by the exerciser (master).
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 137

Programming the Exerciser Programming the Exerciser as a Target Device
5 0 0 VGA Palette Snoop Control.

No functionality. The testcard can pretend to support “VGA palette
snooping” only.

6 0 0 Parity Error Response.

Returns, enables, and disables the capability of the testcard to report
parity errors, that is: report in status register bit 8, or ignore.

This information is used when PERR# or SERR# should be asserted during
the address phase due to master or target attribute settings.

The testcard does not assert PERR# or SERR# when “real” parity errors
occur but only because of attribute settings.

7 0 1 Wait Cycle Control (Address/Data Stepping).

No functionality. Whether stepping is actually done depends on the
master or target attributes only.

8 1 0 System Error Control.

Returns, enables, and disables the capability of the testcard to assert
SERR#.

9 0 1 Fast Back-to-Back Control.

Returns, enables, and disables the capability of the testcard to perform
Fast Back-to-Back cycles.

The setting of this bit does not influence the master statemachine.

Bit Mask Value Meaning
138 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Target Device Programming the Exerciser
Status Register The table below describes the bits of the configuration space header
status register.

NOTE This is not the status register of the testcard. The “Mask” and “Value” and
columns contain factory defaults.

Bits 0 ... 4 are unused. For details refer to the PCI Specification.

Bit Mask Value Meaning

5 0 0 66 MHz Capable Status.

6 1 0 User Definable Features (UDF) Status.

7 1 0 Fast Back-to-Back Status.

The target exerciser is not capable of accepting Fast Back-to-Back
cycles if the previous transaction was a transaction to a different
target.

8 1 0 Data Parity Status.

Returns whether PERR# has been signaled.

10:9 00 00 Device Select Timing Status.

This setting is independent of the decode speed actually used (see
“Decoder Properties” on page 111).

11 0 0 Signaled Target Abort Status.

Returns whether a target abort has been signaled.

12 0 0 Received Target Abort Status.

Returns whether a target abort has been received.

13 0 0 Received Master Abort Status.

Returns whether a master abort has been received. Exception: master
aborts are not signaled after special cycles.

14 Signaled System Error Status.

Returns whether a system error actually used signaled.

The bit is set if the exerciser asserts SERR#.

15 Detected Parity Error Status.

Returns whether a parity error actually used detected, regardless of
whether parity error signalling is disabled.

The bit is set if the exerciser asserts PERR# except during address
phases.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 139

Programming the Exerciser Programming the Exerciser as a Target Device
Functions Overview
The Agilent E2925B testcard’s programming interface provides functions
for programming the configuration space header. The available functions
and their usage is shown by describing the programming steps.

Programming Steps Programming the configuration space header involves the following
steps:

1 Write a value into the configuration space header register.

Use BestConfRegSet.

2 To define registers to be read-only for accesses from other masters,
set the mask.

Use BestConfRegMaskSet.

3 Set the power-up property.

Use BestPowerupPropSet.

4 Store the current settings as user defaults for power-up.

Use BestAllPropStore.

Example

Task Set the “DeviceID” and “VendorID” register in the testcard’s
configuration space header. These are two neighbored 16-bit registers
and are, in the example, accessed by a 32-bit command that programs
both registers in one go.

The value they are programmed to is 0x2926103C, which programs
“DeviceID” to 2926 and “VendorID” to 103C. Mask the registers to be read-
only for accesses from other masters.

Implementation /* Set the “DeviceID” and the “VendorID” registers of the testcard.*/
err=BestConfRegSet(handle, 0x00, 0x2926103C); C(err);

/* Set all bits of the registers to read-only. */
err=BestConfRegMaskSet(handle, 0x00, 0x00000000); C(err);

/* Read/write bits will have their factory default values at
powerup */
err = BestPowerupPropSet(handle, B_PU_CONFRESTORE, 0); C(err);

/* Store the current settings of all properties as user defaults
for power-up */
err = BestAllPropStore(handle); C(err)
140 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Exerciser as a Target Device Programming the Exerciser
Expansion ROM Programming
Expansion ROM is typically used as boot ROM and can contain a power-
on-self-test, BIOS and interrupt service routines.

The expansion ROM of the testcard features “code-in-place execution”
(XIP), that is without shadowing the expansion ROM content into system
memory for execution. This is beyond PCI specification, but can be used
in a system in which system memory does not yet work.

The expansion ROM of the testcard is accessible

• by means of C-API functions to fill and read the expansion ROM
contents

• through a memory range defined in the “expansion ROM base address
register” in the testcard’s configuration space

Functions Overview
The following figure shows the functions used to program the expansion
ROM.

The expansion ROM is not programmed using a preparation register. The
expansion ROM is simply programmed by …Write() and …Read()
functions, so that no further description is needed.

Expansion ROM

B
es

tE
xp

Ro
m

B
yt

eR
ea

d(
)

B
es

tE
xp

Ro
m

B
yt

eW
rit

e(
)

Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 141

Programming the Exerciser Data Memory and Compare Unit Programming
Data Memory and Compare Unit
Programming

To read and to fill the data memory of the testcard with compare data
and data to send, you need to access the testcard’s data memory from
your control PC.

For detailed information about organization and using of the data
memory and the data compare unit, refer to the Agilent E2925B

Opt. 300 PCI Exerciser User’s Guide.

Functions Overview
The following figure shows the functions used to program the data
memory.

Control-PC

SystemUnder Test

µP

Host
Bridge

System
Memory

PCI Bus0

Device Under
Test

Testcard

BIOS

BestDataMemRead()

BestDataMemWrite()
142 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Data Memory and Compare Unit Programming Programming the Exerciser
Programming Steps Programming the data memory and compare unit requires the following
steps:

1 Initialize the internal data memory of the testcard, by filling it
completely with zeros.

Use BestDataMemInit.

2 Perform data transfer to and from the internal data memory.

– To write data to the internal data memory of the testcard via the
control interface, the control PC runs the C program and can be
used to generate the data to be written.

Use BestDataMemWrite.

– To read data from the testcard, the same method is used in reverse.

Use BestDataMemRead.

Example
Task Read a memory block of 32 Kbyte (0x8000) from the data memory of the

testcard, beginning with internal address 0x0000, to the control PC
memory (specified by buffer).

Implementation err=BestDataMemRead(handle, 0x0000, 0x8000, buffer);C(err);
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 143

Programming the Exerciser Host Access Programming
Host Access Programming

The testcard provides host access functions that apply master block
transfers and data memory functions to transfer data between the
control PC and the system under test. They are a convenient way for you
to transfer data to and from the system under test without having to
program master block transfer properties.

Functions Overview
The following figure shows the functions used for host access.

The testcard is plugged into a system under test and connected to a
control PC.

Programming Steps Programming host access requires the following steps:

1 Prepare the transfer.

– Prepare the block transfers used to transfer data from the testcard’s
data memory to the system under test to allocate the buffer used for
the transfers in the data memory of the testcard. (This buffer
always resides in the uppermost range of the memory.)

– Define the direction of the master block transfers (read/write).

Use BestHostSysMemAccessPrepare.

SystemUnder Test

µP

Host
Bridge

System
Memory

PCI Bus0

Device Under
Test

Testcard

BIOS

Control-PC

BestHostSysMemDump64()

BestHostSysMemFill64()
144 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Host Access Programming Programming the Exerciser
2 Perform the transfer.

– To transfer data from the control PC to the system under test, use
BestHostSysMemFill64.

This function transfer data into a buffer in the testcard’s data
memory. A master block transfer writes the data into the device
under test.

– To fetch data from the system under test to the control PC in the
opposite direction, use BestHostSysMemDump64.

NOTE The functions always use default attributes (attribute page 0) and
change generic master properties. See “Programming the

Exerciser as a Master Device” on page 80.

– For bytewise memory transfers, I/O transfers and configuration
accesses, use the following functions to set and read PCI registers
of devices in the system under test:

Use BestHostPCIRegGet and BestHostPCIRegSet.

Example
Task Read data from the system under test.

Implementation /* Reserve the uppermost 8 KBytes of the memory for host access and
specify a memory read bus command */

err=BestHostSysMemAccessPrepare(handle, B_CMD_MEM_READ, 8192);
C(err);

/* Read 32 KBytes from a device with PCI address 0xB8000000 to the
memory of the host (memory address is specified by buffer)*/

err=BestHostSysMemDump64(handle, 0, 0xB8000000, 0x0800, buffer);
C(err);
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 145

Programming the Exerciser Interrupt Programming
Interrupt Programming

The testcard can generate any PCI interrupt INTA# ... INTD#. You can use
C functions to:

• Set the interrupt line.

Use BestInterruptGenerate.

• Check the interrupt status in the interrupt status register.

Use BestConfRegGet.

• Clear the interrupt.

Use BestStatusRegClear or BestConfRegSet.

These functions can, for example, be used when developing interrupt
drivers for a PCI device.

Interrupt Status Register The interrupt status register is located in the private section of the
testcard’s configuration space. It can be read, for example, by interrupt
drivers to determine whether the testcard has generated an interrupt.

The offset within the configuration space is 54\h. The bits of interrupt
status register are explained in the table below.

Example
Task Generate a PCI interrupt and clear all interrupts.

Implementation /* Generate PCI interrupt A */
err=BestInterruptGenerate(handle, B_INTA);C(err);

/* Clear all interrupts */
err=BestConfRegSet(handle, 54\h, 0); B_CHECKERR(err); ;

Bit Oper. Value Meaning

0 Interrupt A pending.

R 0 No interrupt pending.

1 An interrupt has been generated by the testcard and waits to
be serviced.

W x Ignored.

1 Interrupt B pending. (Read/write operation, value, meaning see interrupt A.)

2 Interrupt C pending. (Read/write operation, value, meaning see interrupt A.)

3 Interrupt D pending. (Read/write operation, value, meaning see interrupt A.)

7::4 Reserved
146 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Built-In Test Programming Programming the Exerciser
Built-In Test Programming

The built-in test functions set up and perform prepared tests, applying
multiple features of the testcard. They simplify programming if the
prepared tests meet the testing requirements. The following built-in tests
are available:

• Protocol Error Detect

This test captures protocol errors using the analyzer of the testcard.
Refer to “Protocol Observer Programming” on page 47.

• Traffic Make

In order to consume PCI bus bandwidth, this test drives PCI traffic
onto the PCI bus. The master of the testcard writes data to the
testcard’s target.

• Write-Read and Write-Read Compare

This test accesses another PCI device’s memory or the memory of the
system under test. Data blocks are written and read via the PCI bus.
The read data can be compared with the previously written data.

• Block Move

This test transfers a data block from one PCI address to another.

• Read

This test reads data from PCI addresses.

For each test, a set of programmable properties can be used to adapt the
test to certain testing requirements. For example, you may vary the
protocol stress, block lengths, data pattern, and so forth.

The test results are stored in a waveform file and a report file. The
waveform file can be viewed with the listers of the graphical user
interface. The report file can be viewed with a normal text editor.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 147

Programming the Exerciser Built-In Test Programming
Functions Overview
The Agilent E2925B testcard’s programming interface provides functions
for set up built-in tests. The available functions and their usage is shown
by describing the programming steps.

Programming Steps Programming the built-in test function, for example a “write-read” test,
requires the following steps:

1 Specify new test properties.

Use BestTestPropSet.

2 Specify the master generic properties.

Use BestMasterGenPropSet.

3 Initiate the test run.

Use BestTestRun.

The test runs until one of the following occurs.

– A data compare error occurs.

– The test is stopped externally, for example, by clicking on the Stop
button in the graphical user interface.

To stop the test externally, you could, for example, build a loop that
continually requests status register contents until one of the
register bits indicates that a particular event has taken place. Then
the master can be stopped. Refer to “BestMasterStop” and
“BestStatusRegGet” in the Agilent E2925B Opt. 320 C-API/PPR

Reference.

4 Upload the test result.

Use BestTestResultDump.
148 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Built-In Test Programming Programming the Exerciser
Example
Task Set up an infinitely running “write-read” test with automatic comparison

of the written and read data. Set up the test to write 160 bytes to bus
address b8000\h, to read them back and compare them with the written
data.

Implementation / * Stop the master and specify the test properties. */
err=BestMasterStop(handle); C(err);

err=BestTestPropDefaultSet(handle); C(err);
err=BestTestPropSet(handle, B_TST_SOURCEADDR, B8000\h); C(err);
err=BestTestPropSet(handle, B_TST_NOFBYTES, 160); C(err);
err=BestTestPropSet(handle, B_TST_DATAPATTERN, B_DATAPATTERN_TOGGLE);
C(err);
err=BestTestPropSet(handle, B_TST_COMPARE, 1); C(err);

/* Set the master to run infinitely in the example, otherwise, the
test will only be performed once. */
err=BestMasterGenPropSet(handle, \

B_MGEN_REPEATMODE, \
B_REPEATMODE_INFINITE); C(err);

/ * Initiating the test run: The type of built-in test is specified
with the function starting the test: */
err=BestTestRun(handle, B_TSTCMD_WRITEREAD); C(err);

/ * Upload the test results: When the test run has finished the
test results can be written to the files "TESTOUT.WFM" and
"TESTOUT.RPT": */

err=BestTestResultDump(handle, "c:\temp\TESTOUT"); C(err);

Just specify the file name, the file suffixes are attached by the function.
To view the waveform file, refer to the Agilent E2925B PCI Analyzer

User’s Guide. To view the report file use a text editor.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 149

Programming the Exerciser Built-In Test Programming
150 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming the Interfaces

The Agilent E2925B testcard provides application interfaces for
exchanging information between the testcard and the test environment
during the run time of the test application.

The following sections give information about programming these
interfaces:

• “CPU Port Programming” on page 152 shows how the CPU port can
be programmed to connect up to two external devices that can supply
or pick up data and addresses on separated buses (such as a CPU).

• “Static I/O Port Programming” on page 160 shows how to connect an
external device that can supply and pick up data.

• “Trigger I/O Sequencer Programming” on page 163 shows how to use
the trigger input and output lines.

• “LED Controlling and Display Functions Overview” on page 169
shows how to write data to the LED display.

• “Mailbox Programming” on page 171 shows how data can be
exchanged between applications running on the control PC and the
system under test.

• “Power Management Event Programming” on page 175 shows how
to control power management events on the system under test.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 151

Programming the Interfaces CPU Port Programming
CPU Port Programming

The CPU port of the Agilent E2925B testcard allows the control or
initialization of a device with an (Intel-compatible) interface bus. The
bus features separate data and address lines. The CPU port includes the
following:

• 16-bit address bus (64 Kbyte address range)

• 16-bit data bus

• 2 devices that can be connected directly to ready-to-use select lines

• 3.3 V CMOS outputs driven by 74LVT (can also drive 5 V TTL inputs)

• 3.3 V CMOS inputs connected to 74LVT (can also pick up 5 V TTL
outputs)

• automatic timing mode for default timing (no additional RDY# signal
necessary)

The outputs of the CPU port can withstand a short.

NOTE During transfer, the CPU port is always the master, never a target.

CPU Port Connector The connector on the testcard is

• Series AMPMODU System 50

• Manufacturer AMP

• Part number 104549-9 (80 positions)
152 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

CPU Port Programming Programming the Interfaces
Pin Configuration The figure below shows the connector and the pin configuration of the
CPU port of the Agilent E2925B testcard:

Signals of the CPU Port The figure below shows the signals of the CPU port.

The table shows the direction and the meaning of the signals.

CLK

RST#

SEL[1::0]

WR#

RD#

A[15::0]

D[15::0]

BE#[1::0]

RDY#

INT#

CPU Port
(LVT)

Device
Under
Test
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 153

Programming the Interfaces CPU Port Programming
Signal Dir Meaning

CLK Out 16-MHz clock related to the following signals. This signal
is helpful but not required.

RST# Out Active low reset output.

SEL#[1::0] Out Active low chip select signals. Two devices can directly
be connected without additional decoding logic.

WR# Out Active low write enable signal.

RD# Out Active low read enable signal.

A[15::0] Out Address bus, A[15] is MSB.

D[15::0] In / Out Data bus driven, D[15] is MSB. Output on writes, input on
reads.

BE#[1::0] Out Active low byte enable signals. On writes, they indicate
which byte lines carry meaningful data. On reads, they
indicate which byte lines will be used by the testcard.

RDY# In / - Active low byte ready signal driven by the device
connected to the CPU port.

On writes, it indicates that data has been transferred.

On reads, it indicates that it has provided the data on the
DATA[] bus.

In automatic timing mode, this signal does not need to be
generated.

INT# In Active low, level-sensitive interrupt input.
154 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

CPU Port Programming Programming the Interfaces
Timing Diagrams The figures and the table below contain the timing diagrams for a write
and a read and the timing specification for the CPU port signals.

CLK

ADDR

SEL/BE#

WR#

RDY#

DATA valid

valid

t1 t5 t6t2

t3

t4

t8

t7

t11

CLK

ADDR valid

t8

SEL/BE#

RD#

RDY#

t1 t9
t10

t4

t12

DATA valid
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 155

Programming the Interfaces CPU Port Programming
The following table shows the timing specification.

The following table shows the CPU port pin configuration.

Parameter Minimum Notes

t1 60 ns

t2 60 ns

t3 50 ns

t4 0 ns N/A in automatic timing mode.

t5 130 ns

t6 60 ns

t7 60 ns

t8 5 ns

t9 0 ns N/A in automatic timing mode.

t10 0 ns

t11 160 ns In automatic timing mode only.

t12 160 ns

Pin Signal Pin Signal Pin Signal Pin Signal

1 WR# 2 GND 41 A13 42 A14

3 INT# 4 GND 43 A15 44 GND

5 RD# 6 GND 45 D0 46 GND

7 RST# 8 GND 47 D1 48 GND

9 SEL#0 10 GND 49 D2 50 GND

11 SEL#1 12 GND 51 D3 52 GND

13 BE#0 14 GND 53 D4 54 GND

15 RDY# 16 GND 55 D5 56 GND

17 A0 18 GND 57 D6 58 GND

19 A1 20 GND 59 D7 60 GND

21 A2 22 GND 61 BE#1 62 GND

23 A3 24 GND 63 D8 64 GND

25 A4 26 GND 65 D9 66 GND

27 A5 28 GND 67 D10 68 GND

29 A6 30 GND 69 D11 70 GND

31 A7 32 GND 71 D12 72 GND

33 A8 34 GND 73 D13 74 GND

35 A9 36 GND 75 D14 76 GND

37 A10 38 A12 77 D15 78 GND

39 A11 40 GND 79 CLK 80 GND
156 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

CPU Port Programming Programming the Interfaces
Connecting the CPU Port to a Decoder The CPU port is an internal resource that can be connected to a decoder
so that the testcard’s target can be used for direct transfers between CPU
port and PCI bus. Do this according to the following rules:

• Set the decoder properties as follows:

– “Resource” to “CPU port”

– “Resource size” to 16

– “Base address” to 0

• Transfer words and/or dwords only.

The testcard uses the CPU port as it is determined by the CPU port
properties (port mode, ready-signal, protocol).

If a decoder and software use the CPU port simultaneously, this can
result in conflicts. It is not recommended. Note that locking the CPU port
locks the CPU port property settings but not the transfers.

For more information on decoders, refer to “Programming the Target

Decoder Properties Memory” on page 109.

Functions Overview
Programming Steps Programming the CPU port requires the following steps:

1 To enable the CPU port, set the CPU port mode to “master”.

Use BestCPUportPropSet.

2 Optionally, you can wait for an interrupt to occur. For this purpose,
read the interrupt status of the CPU port until an interrupt is
recognized.

Use BestCPUIntrStatusGet.

After the interrupt occurred, clear the interrupt with
BestCPUIntrClear.

3 To read data from the CPU port, use BestCPUportRead or
BestCPUportWordBlockRead.

Using BestCPUportRead, you can read bytes or words from the CPU.
The width of this data is specified by the size parameter.

With BestCPUportWordBlockRead, you can read a data block of
words.

NOTE For reading words, the address must be word aligned.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 157

Programming the Interfaces CPU Port Programming
4 To write data to the CPU port, use BestCPUportWrite or
BestCPUportBlockWrite.

Using BestCPUportWrite, you can write bytes or words to the CPU.
The width of this data is specified by the size parameter.

Using BestCPUportWordBlockWrite, you can write a data block of
words.

NOTE For writing words, the address must be word aligned.

5 To disable the CPU port, set the CPU port mode to “disabled”. This
sets the outputs to high impedance.

Use BestCPUportPropSet.

6 Furthermore, you can control the RST# line of the CPU port.

Use BestCPUportRST.
158 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

CPU Port Programming Programming the Interfaces
Example
Task The CPU port of the testcard is to drive 8 LEDs on an example device.

To do this, the following is necessary:

• Interrupts have to be generated manually using a switch with a
debouncing circuit.

• If the switch is actuated, the program should read an 8-bit value from
the device, increment it and write the new value back to the device.

Example Device:

Implementation /* Enable the CPU port by setting the CPU port mode to “master”.
For the remaining port properties, use the default values. */

err=BestCPUportPropSet(handle, B_CPU_MODE, B_CM_MASTER); C(err);

/* Wait for an interrupt by reading the interrupt status of the CPU
port until an interrupt is recognized. */

while(!intr)

{

err=BestCPUIntrStatusGet(handle, &intr); C(err);

}

/* Clear the interrupt. */
err=BestCPUIntrClear(handle); C(err);

/* Read a byte from the CPU port address 0x0801. */
err=BestCPUportRead(handle, 0, 0x0801, &data, B_SIZE_BYTE); C(err);

DUT
Int

Agilent Testcard

Data

LEDs
LatchDecoder

Address
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 159

Programming the Interfaces Static I/O Port Programming
The figure below shows the respective timing diagram:

/* Increment and rewrite data to the same CPU port address. (The
data width must be specified by the size parameter.) */

data++;

err=BestCPUportWrite(handle, 0, 0x0801, data, B_SIZE_BYTE); C(err);

The figure below shows the respective timing diagram:

Static I/O Port Programming

The static I/O port can transfer data (for example, status information)
between the testcard and the test environment during execution of a test.

Each of the static I/O port pins can be programmed as either:

• input

• totem-pole output

• open-drain output

This involves the following:

• The testcard sets the pin properties (such as specifying input/output
pins).

• The testcard reads or writes the data.

Addr[15::0]

Data[7::0]

RD#

Sel0#

BE0#

0x0801

Valid data

Addr[15::0]

Data[7::0]

WR#

Sel0#

BE0#

0x0801

0xEE
160 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Static I/O Port Programming Programming the Interfaces
Connecting the Static I/O Port to a
Decoder

The static I/O port is an internal resource that can be connected to a
decoder so that the testcard’s target can be used for direct transfers
between CPU port and PCI bus. Do this according to the following rules:

• The decoder properties must be set as follows:

– “Resource” to “Static I/O”

– “Resource size” to 2

– “Base address” to 0

• Only words can be transferred.

• The upper byte of the word must contain the output enables for each
pin.

• The lower byte must contain the data bits to be transfer.

The static I/O pins provide two output modes:

• Totem pole

The output enable bit must be 0.

The data bit is driven to the static I/O pin.

• Open drain

The data bit must always be 0. It is driven by the external circuit.

The output enable bit must be 0 to set the static I/O pin to “active”, or 1
to set it to “high impedance”.

If a decoder and software use the static I/O port simultaneously, this can
result in conflicts. It is not recommended. Note that locking the static I/O
port locks the static I/O port property settings but not the transfers.

For more information on decoders, refer to “Programming the Target

Decoder Properties Memory” on page 109.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 161

Programming the Interfaces Static I/O Port Programming
Functions Overview
Programming Steps Programming the static I/O port requires the following steps:

1 To specify input/output pins, set the respective pin property.

Use BestStaticPropSet.

NOTE Repeat this for each pin to be configured other than input. (By default,
all pins of the static I/O port are input.)

2 To read data, a complete byte must be read from static I/O port.

Use BestStaticRead.

NOTE Reading a single pin is not supported.

3 To write a bit to a pin of the static I/O port, or to invert it for a period
of time, use BestStaticPinWrite.

To write a byte to the static I/O port, use BestStaticPinWrite.

Example
Task Configure pin 2 of the static I/O port as a totem-pole output and write a

value of 1 to this pin.

Implementation /* Configure pin 2 as a totem-pole output. */
err=BestStaticPropSet(handle, 2, B_STAT_PINMODE, B_PMD_TOTEMPOLE);
C(err);

/* Write a value of 1 to pin 2. */
err=BestStaticPinWrite(handle, 2, 1); C(err);

/* Alternatively, write a complete byte to static I/O port or read
a complete byte from static I/O port. */
for(i = 0; i < 4; i++) \

err=BestStaticPropSet(handle, \
i, \
B_STAT_PINMODE, \
B_PMD_TOTEMPOLE); C(err);

for(i = 4; i < 8; i++) \
err=BestStaticPropSet(handle, \

i, \
B_STAT_PINMODE, \
B_PMD_INPONLY); C(err);

err=BestStaticWrite(handle,0x0F); C(err);
err=BestStaticRead(handle, &value); C(err);

printf("Value input at static IO port (pins 7:4) %i", value>>4);
162 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Trigger I/O Sequencer Programming Programming the Interfaces
Trigger I/O Sequencer
Programming

The Agilent E2925B testcard provides a connector with 12 external
trigger lines (trigger port). The trigger lines can be used to synchronize
the testcard and other parts of the test environment on the basis of the
PCI clock.

Each trigger line can be programmed as either input, open-drain output,
or totem-pole output:

• Input trigger signals can be used in all pattern terms.

• Output trigger signals are generated by the trigger sequencer.

The following figure gives an overview of the trigger input and output.

By programming the generic properties, you can specify which lines of
the trigger I/O port are input and which are output.

Trigger I/O

PCI Bus

Sequencer

Trigger I/O Port
(12 Lines Connector)

Out

Analyzer

In
/O

ut

B
us

S
ig

na
ls

Generic
Properties

Trace
Memory

Performance.
Measures

In
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 163

Programming the Interfaces Trigger I/O Sequencer Programming
The output lines of the trigger port are controlled by a programmable
sequencer. For more information on sequencers, refer to “Sequencer

Programming” on page 55.

The trigger I/O input lines are directed to the analyzer and can there, for
example, be evaluated by triggering the trace memory or, being counted,
or stored in the trace memory.

Functions Overview
The Agilent E2925B testcard’s programming interface provides functions
for programming generic properties and the sequencer. The available
functions and their usage is shown by describing the programming steps.

Programming Steps Programming the trigger I/O sequencer requires the following steps:

1 Set the preload value for feedback counter C.

Use BestTrigIOSeqGenPropSet.

With this function, you can also determine the output mode of trigger
line 0 … 11.

2 Set all properties in the trigger I/O sequencer description table to
default values.

Use BestTrigIOSeqPropDefaultSet.

3 Set numeric transition properties “Current State” and “Next State”.

NOTE All transition conditions of one state must be mutually exclusive. This
means that one and only one transition condition of a state must turn
true at a time. Otherwise, the software will not accept the table
because the table does not uniquely define the sequencer’s behavior.

Use BestTrigIOSeqTranPropSet.
164 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Trigger I/O Sequencer Programming Programming the Interfaces
4 Set conditions in the trigger I/O sequencer description table.
Conditions can be:

– transition condition for the trigger I/O sequencer to move from one
state to the next

– output conditions on trigger I/O pins

– conditions to decrement or preload the feedback counter

All conditions are specified as logical expressions. These expressions
can either be set directly to true (1) or false (0), or they can consist of
pattern identifiers referring to pattern terms (pt0, pt1, ...) and the
terminal count (tc) of the feedback counter C.

Use BestTrigIOSeqTranCondPropSet.

5 Write the trigger I/O sequencer description table to the trigger I/O
sequencer memory.

Use BestTrigIOSeqProg.

6 Start the trigger I/O sequencer.

Use BestTrigIORun.

7 To stop the trigger I/O sequencer, use BestTrigIOStop.

Example
Task To measure the latency of a PCI-to-PCI bridge, the trigger is to be

programmed. The following figure shows the example test system:

In the example, two testcards are needed. The testcards are placed on
two PCI buses that are connected via the PCI-to-PCI-bridge under test.
The testcards are set up for data transfer from one to the other, for
example, with the Memory Write command.

Exerciser & Analyzer 1

Exerciser & Analyzer 2

PCI Bus 0

PCI Bus 1

Memory Write

PCI-to-PCI
Bridge

Trigger Out

Trigger In
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 165

Programming the Interfaces Trigger I/O Sequencer Programming
The trigger output of the testcard 1 (master) is connected to a trigger

I/O input line of testcard 2 (target). Testcard 1 gives a pulse to testcard 2
via this connection when it starts the transaction. This pulse triggers the
testcard 2’s trace memory.

To accomplish this, you need to program testcard 1 to transfer data and
send the pulse to testcard 2. To set up testcard 1, you need to program
the trigger I/O sequencer for trigger out as follows:

• Pattern Terms

To recognize the transfer, pattern term 1 must be sensitive to master
transactions:

pt1 == “m_xact”

• States

A pulse is issued on trigger I/O line 0 when a transaction begins.
Afterwards the line returns to 0. This can be done with the following
sequencer description table:

Implementation /* Enable trigger out line 0 as totem-pole output.*/
err=BestTrigIOGenPropSet(handle, \

B_TRIGIOSEQGEN_OUT_0, \
B_TRIGIO_TOTEMPOLE); C(err);

/* Set pattern term 1 to detect master transactions. */
err=BestPattSet(handle, B_PATT_TERM_1, "m_act"); C(err);

/* Initialize the trigger I/O sequencer description table. */
err=BestTrigIOSeqPropDefaultSet(handle); C(err);

Transient No. State Next State
Transition
Condition

Trigger Line #0
(Output)

0 0 0 !pt1 0

1 0 1 pt1 1

2 1 1 pt1 0

3 1 0 !pt1 0
166 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Trigger I/O Sequencer Programming Programming the Interfaces
/* Initialize and set up transient 0. */
err=BestTrigIOSeqTranPropDefaultSet(handle, 0); C(err);
err=BestTrigIOSeqTranPropSet(handle, 0, B_TRIGIOSEQ_STATE, 0);
C(err);
err=BestTrigIOSeqTranPropSet(handle, 0, B_TRIGIOSEQ_NEXTSTATE, 0);
C(err);
err=BestTrigIOSeqTranCondPropSet(handle, 0, B_TRIGIOSEQ_XCOND,
"!pt1"); C(err);
err=BestTrigIOSeqTranCondPropSet(handle, 0, B_TRIGIOSEQ_OUT_1,
"0"); C(err);

/* Initialize and set up transient 1. */
err=BestTrigIOSeqTranPropDefaultSet(handle, 1); C(err);
err=BestTrigIOSeqTranPropSet(handle, 1, B_TRIGIOSEQ_STATE, 0);
C(err);
err=BestTrigIOSeqTranPropSet(handle, 1, B_TRIGIOSEQ_NEXTSTATE, 1);
C(err);
err=BestTrigIOSeqTranCondPropSet(handle, 1, B_TRIGIOSEQ_XCOND,
"pt1"); C(err);
err=BestTrigIOSeqTranCondPropSet(handle, 1, B_TRIGIOSEQ_OUT_1,
"1"); C(err);

/* Initialize and set up transient 2. */
err=BestTrigIOSeqTranPropDefaultSet(handle, 2); C(err);
err=BestTrigIOSeqTranPropSet(handle, 2, B_TRIGIOSEQ_STATE, 1);
C(err);
err=BestTrigIOSeqTranPropSet(handle, 2, B_TRIGIOSEQ_NEXTSTATE, 1);
C(err);
err=BestTrigIOSeqTranCondPropSet(handle, 2, B_TRIGIOSEQ_XCOND,
"pt1"); C(err);
err=BestTrigIOSeqTranCondPropSet(handle, 2, B_TRIGIOSEQ_OUT_1,
"0"); C(err);

/* Initialize and set up transient 3. */
err=BestTrigIOSeqTranPropDefaultSet(handle, 3); C(err);
err=BestTrigIOSeqTranPropSet(handle, 3, B_TRIGIOSEQ_STATE, 1);
C(err);
err=BestTrigIOSeqTranPropSet(handle, 3, B_TRIGIOSEQ_NEXTSTATE, 0);
C(err);
err=BestTrigIOSeqTranCondPropSet(handle, 3, B_TRIGIOSEQ_XCOND,
"!pt1"); C(err);
err=BestTrigIOSeqTranCondPropSet(handle, 3, B_TRIGIOSEQ_OUT_1,
"0"); C(err);

/* Write the sequencer description table to the sequencer memory.
The transition conditions are checked for consistency. */
err=BestTrigIOSeqProg(handle); C(err);
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 167

Programming the Interfaces Trigger I/O Sequencer Programming
/* Start the trigger I/O sequencer. */
err=BestTrigIORun(handle); C(err);

NOTE To complete the test, you additionally need to set up and then run the
following:

• Testcard 1 has to be set up as master to transfer data.

See “Programming the Exerciser as a Master Device” on page 80

• Testcard 2 has to be set up as target to receive the data.

“Programming the Exerciser as a Target Device” on page 105.

• Testcard 2’s analyzer has to trigger at the pulse.

“Programming the Analyzer” on page 45.
168 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

LED Controlling and Display Functions Overview Programming the Interfaces
LED Controlling and Display
Functions Overview

Programming Steps To control the LED display, the following steps are required:

1 Set the mode of the LED display.

Before writing values to the display, select “user mode”.

Use BestDisplayPropSet.

2 Write a value to the LED display.

Use BestDisplayWrite.

Example
Task Write a byte to the hex display.

Implementation #include <stdio.h>
#include <stdlib.h>
#include <mini_api.h>
#include <regconst.h>

#define CHECK { if(status != B_E_OK) \

{ printf("%s\n", BestErrorStringGet(status)); return -1; } }

int main (int argc, char *argv[])
{
b_errtype status;
b_handletype handle;
b_int32 devid;

int i,j;

/* Get device number. The subsystem id (0 in this example) can be
used to distinguish between multiple testcards*/
printf("getting devid\n");
getchar();

/*Initialize port internal structs and variables.*/
printf("Opening Best\n");
status = BestDevIdentifierGet(0x103c, 0x2925, 0, &devid); CHECK
status = BestOpen(&handle, B_PORT_PCI_CONF, devid); CHECK
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 169

Programming the Interfaces LED Controlling and Display Functions Overview
/*Establish connection to testcard.*/
printf("Connecting to Best\n");
status = BestConnect (handle); CHECK;

/* Application program goes in here, for example:*/

/* Put hex display into user mode */

status = BestDisplayPropSet(handle, B_DISP_USER); CHECK
for(i = 0; i < 2000; i++)

{
for(j = 0; j < 100000; j++);

/* Write byte to hex display */
status = BestDisplayWrite(handle, i%256); CHECK

}

/* Put hex display into protocol observer mode */
status = BestDisplayPropSet(handle, B_DISP_CARD); CHECK

/* Disconnect from the current port.*/
status = BestDisconnect (handle); CHECK;

/* Close the session and deallocate memory*/
status = BestClose(handle); CHECK;

return 0;

}

170 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Mailbox Programming Programming the Interfaces
Mailbox Programming

The mailbox of the Agilent E2925B testcard allows communication
between a program running on the system under test and a program
running on an external control PC. Communication to the control PC is
done via either the control interface, RS-232 or the parallel port (the PCI
bus can also be used as the control interface if the control PC is
simultaneously the system under test).

The mailbox consists of two 32-bit registers. This enables full duplex
operation. Each register is equipped with a flag that is set when data is
written into the register, and reset if the register is read.

The figure below shows the principle of the mailbox:

The mailbox can be accessed by:

• Functions provided by the C-API

• Direct PCI access, that is, by a programmable address range in
memory space, or I/O space, or configuration space

The flags are held in the mailbox status register.

Control PC

Internal
Resources

Exerciser and Analyzer Card

PCI Bus

Control
Interface

Mailbox

Write
Register

Read
Register

µP

Host Bridge System
Memory

System Under Test

Running Application

Flag

Flag

Running Application
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 171

Programming the Interfaces Mailbox Programming
Access by Functions The mailbox can be accessed by using the mailbox functions either from
the control PC or from the system under test.

Direct PCI Access to the Mailbox The mailbox registers are located in the private section of the
Agilent E2925B testcard’s configuration space. They can be read or
written by using configuration commands. The mailbox register
addresses are shown in the table below.

An access to the lowest byte of each register generates an interrupt that
can be used to inform the communication partner about the access. If
this is used, the lowest byte should be accessed either simultaneously
with or after access to the other bytes.

Mailbox Status Register The following table shows the mailbox status register in the
configuration space:

Offset Config Bits Type Oper. Meaning

4C\h [31:0] RW Conf. Read Reads the mailbox.

Conf. Write Writes to the mailbox.

50\h 0 RO Conf.

Read

Flag of the mailbox
write register:

0 = mailbox empty,
write possible

1 = don’t write, mailbox
contains data

1 RW Conf.

Read

Flag of the mailbox read
register:

0 = mailbox is empty.

1 = mailbox contains
data

Note: If you read the
mailbox via PCI, reset
this flag by writing a 1
to this bit.

Conf.

Write

Generates an interrupt
for the on-board CPU to
inform the CPU that the
mailbox register has
been read and clears
the flags.
172 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Mailbox Programming Programming the Interfaces
Functions Overview
The following figure shows the available mailbox functions and the
application:

Programming Steps for Access via
PCI Bus

To access the mailbox via PCI bus, the following steps are required:

1 Identify the testcard.

Use BestDevIdentifierGet.

Because multiple PCI testcards can be plugged into the system under
test, the Agilent E2925B testcard needs to be identified for mailbox
access.

2 To write data to the mailbox via the PCI bus, use
BestPCICfgMailboxSendRegWrite.

This function automatically checks the status flag. Unread data will
not be overwritten. If the mailbox contains unread data, first read the
data to reset the flag. Use BestPCICfgMailboxReceiveRegRead.

Control PC

Internal
Resources

Exerciser and Analyzer Card

Control
Interface

Mailbox

Write
Register

Read
Register

µP

Host Bridge System
Memory

System Under Test

Running Application

Flag

Flag

Running Application

BestPCICfgMailboxSendRegWrite()

BestPCICfgMailboxReceiveRegRead()

BestMailboxSendRegWrite()

BestMailboxReceiveRegRead()

PCI Bus
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 173

Programming the Interfaces Mailbox Programming
Programming Steps for Access via
Control PC

To access the mailbox via the control PC:

� Send and receive data using the control interface.

Use BestMailboxSendRegWrite and BestMailboxReceiveRegRead
respectively.

Example
The following code fragments give examples of the two ways of
accessing the mailbox:

Task Write data to the mailbox via the PCI bus.

Implementation /* Identify the testcard and write data to the mailbox until the

flag indicates that data has been written successfully. */

err=BestDevIdentifierGet(0x103C, 0x2926, 0, &devid); C(err);

do {
err = BestPCICfgMailboxSendRegWrite(devid, data, &status);
C(err);

} while(status == 0);

Task Read data from the mailbox via the control PC.

Implementation /* Read from the mailbox until valid data can be read from the
mailbox. If the status bit is set, previously unread "mail" is
returned as the value.*/

do {
err = BestMailboxReceiveRegRead(handle, &data, &status); C(err);

} while(status == 0);
174 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Power Management Event Programming Programming the Interfaces
Power Management Event
Programming

The Agilent E2925B testcard can control PCI Power Management Events
(PME). The events are used by a PCI device to “wake up” the PC if it is in
power save mode.

Power Management Event Functions The C-API provides functions for reading and writing on the PME line.
This allows the testcard to emulate both the PC receiving a power
management event, and the device issuing it.

• To read the PME line, use BestPMERead.

• To write on the PME line, use BestPMEWrite.

Example The following line issues a power management event to the PCI system,
so that it wakes up from power save mode, or winds up power save
timers:

err=BestPMEWrite(handle, 1);C(err);
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 175

Programming the Interfaces Power Management Event Programming
176 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Using the PPR

The following sections describe the PCI Permutator and Randomizer
software and show how to use it.

• “Generating Permutations” on page 178 gives basic information
about permutations supported with the PPR software.

• “Example Test Design” on page 183 shows a typical scenario to be
tested. This example is subject of all further sections.

• “How to Write a Test Program” on page 182 introduces the steps
required for setting up a test program.

• “PPR Administration” on page 186 gives detailed information on the
first steps for setting up a test program.

• “Programming Master Block Permutations” on page 189 gives detailed
information on generating and programming master block permutations.

• “Programming Master Attribute Permutations” on page 199 gives
detailed information on generating and programming master attribute
permutations.

• “Programming Target Attribute Permutations” on page 205 gives
detailed information on generating and programming target attribute
permutations.

• “Generating PPR Reports” on page 209 gives information on the
contents of a PPR report and shows how to program it.

• “Running the PPR Test” on page 211 shows the required programming
steps for running a test and checking for protocol errors.

• “Analyzing the Report” on page 213 describes all information
generated in a PPR Report.

• “Further Options and Possibilities” on page 229 shows how to
optimize the testing time and to avoid unexpected program behavior,
and informs about byte enable variation, a more exhaustive test,
uncovered permutation and reproducing bus errors.

• “Report Listing” on page 232 shows the complete C program and the
complete report for the example specified in “Example Test Design”

on page 183.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 177

Using the PPR Generating Permutations
Generating Permutations

If you are interested in performing tests using PCI Permutator and
Randomizer software, you need a general understanding of the
algorithms, and you should know some basic terms.

However, there is no need to understand the permutation algorithms in
detail. The software calculates permutations and coverage automatically
and shows the results in a report.

Basic Terms The goal of permutations is to combine values of different
parameters (variation parameters) or variables.

Example:

In the following simplified example, 3 different parameters are
considered: parameter A, B and C. Each of them holds a value list:

– Parameter A can take the following 2 values: 1 and 2.

– Parameter B can take the following 3 values: 3, 4 and 5.

– Parameter C can take the following 5 values: 6, 7, 8, 9 and A.

Different strategies can be pursued to combine each value of a parameter
with all values of the other parameters at least once.

The PCI Protocol Permutator and Randomizer software proceeds as
follows: it simultaneously works through the value lists of the
parameters. With each step—that is each permutation—the next value in
the list is combined with the next values in the other lists. Each
combination is called a tuple.
178 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Generating Permutations Using the PPR
Permutation Table Referring to the example, a permutation table would be generated as
shown in the following figure. This figure also shows the repetition
lengths.

The software starts with the following permutations:

• It builds the first tuple (tuple 1) from the first values of each list: 1, 3,
and 6.

• In the next step, it builds tuple 2 from the second values of each list: 2,
4, and 7.

• In the third step, the list of parameter A has already been worked
through. In this case, the software will start again at the beginning of
that list building tuples with the remaining values of the other lists. In
the example, tuple 3 is built of 1, 5, and 8.

The software proceeds in this way until each value of each parameter is
combined with all values of the other parameters, and thus all
combinations are covered.

Parameter

A B C

Permutation 1

5

10

15

20

25

30

1 3 6
2 4 7
1 5 8
2 3 9
1 4 A
2 5 6
1 3 7
2 4 8
1 5 9
2 3 A
1 4 6
2 5 7
1 3 8
2 4 9
1 5 A
2 3 6
1 4 7
2 5 8
1 3 9
2 4 A
1 5 6
2 3 7
1 4 8
2 5 9
1 3 A
2 4 6
1 5 7
2 3 8
1 4 9
2 5 A

6

30
R(A, B, C)

R(B, C)

R(A)

R(B)

R(C)

R(A, B)

R(A, C)
10

15

5

3

2

Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 179

Using the PPR Generating Permutations
This is the case when the tuples begin to repeat. In the figure, this can be
easily seen with the tuples 1 and 7, considering only parameters A and B.
After each 6 permutations, the tuple sequence of parameters A and B is
repeated.

Repetition Length and Coverage This number of permutations has therefore been named repetition

length, written as “R(A, B)”.

The repetition length can also be specified for each parameter and is
equivalent to the number of values in its value list:

• R(A) is 2

• R(B) is 3

• R(C) is 5

According to the above values, R(A, B) = 6. This equals the product of the
repetition lengths of both parameters A and B, namely 2 and 3. The
repetition length of the other possible pairs can be calculated in the same
way:

• R(A, C) = 2 × 5 = 10

• R(B, C) = 3 × 5 = 15

As can be seen on the previous figure, the tuples built by A and C repeat
every 10 permutations, and B and C every 15 permutations.

The repetition length over all parameters is calculated by multiplying the
repetition lengths of the particular parameters:

R(A, B, C) = 2 × 3 × 5 = 30.

This is represented by the “Permutation Table” on page 179. The 31st
tuple would again be the same as tuple 1, the 32nd tuple as tuple 2, and
so on. This means, that all possible combinations of the values of A, B
and C are covered after 30 permutations (coverage=30).

Unoccupied Prime Number Now a new case will be considered: instead of parameter C, a parameter
D with the possible values B, C, D, and E should be permutated against
parameters A and B. Based on the considerations above, the repetition
lengths are calculated as follows:

• R(D) = 4

• R(A, B) = 2 × 3 = 6 (as above)

• R(A, D) = 2 × 4 = 8

• R(B, D) = 3 × 4 = 12

• R(A, B, D) = 2 × 3 × 4 = 24
180 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Generating Permutations Using the PPR
The following figure, however, shows that this does not work out: the
tuples already start to repeat after 12 permutations, although an overall
repetition length of 24 was calculated.

Furthermore, some values are not combined with all other values: for
example, there is no tuple containing “1” and “C”, and “2” is never
combined with “D”. The reason is that the repetition lengths of
parameters A and D have a common factor (2).

To avoid this, the repetition lengths of all involved parameters must not
have common factors. The software inserts values into the value lists
until the next prime number is reached.

Furthermore, no two parameters may share one prime number as
repetition length. For this reason, the PPR software inserts values until
the next unoccupied prime number is reached.

In the list of parameter D, in the example, one value would have to be
inserted. The list would then hold 5 values, which is the next unoccupied
prime number greater than 4.

NOTE The software would insert the first value of the list again. If more than
one value had to be inserted, the software would proceed in the order of
the values in the list.

These are the basics necessary to understand the meaning of repetition
length and coverage and to understand why the PPR software inserts
values into the value lists until the repetition lengths are unoccupied

prime numbers.

Parameter
A B D

Permutation 1

5

10

15

20

24

1 3 B
2 4 C
1 5 D
2 3 E
1 4 B
2 5 C
1 3 D
2 4 E
1 5 B
2 3 C
1 4 D
2 5 E
1 3 B
2 4 C
1 5 D
2 3 E
1 4 B
2 5 C
1 3 D
2 4 E
1 5 B
2 3 C
1 4 D
2 5 E

Duplicates13-24

Permutation 1-12
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 181

Using the PPR How to Write a Test Program
How to Write a Test Program

This section gives an overview of how a test session may be built using
the PCI Protocol Permutator and Randomizer software.

Programming Steps Writing a C program requires the following steps:

1 Set up the program header.

The program header contains includes, declarations, and an error
handling macro.

How to program the error handling macro is described in “Error

Checking” on page 20.

2 Initialize the software.

This is done by setting generic properties. See “PPR Administration”

on page 186.

3 Program block variation permutations.

See “Programming Master Block Permutations” on page 189.

4 Set up master attribute permutations.

See “Programming Master Attribute Permutations” on page 199.

5 Set up target attribute permutations.

See “Programming Target Attribute Permutations” on page 205.

6 Set up the report properties.

For setting up the properties and printing the report, see “Generating

PPR Reports” on page 209

7 Run the test.

See “Running the PPR Test” on page 211.

8 Set up the program footer.

Deinitialize the PCI Permutator and Randomizer software and
terminate the BEST software. See “PPR Administration” on

page 186.

A complete reference of the available functions can be found in
Agilent E2925B Opt. 320 C-API/PPR Reference.
182 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Example Test Design Using the PPR
Example Test Design

To illustrate the basic concepts of the Permutator and Randomizer, this
section shows an example test. This test is designed to determine
whether a compound block can be correctly transferred using various
protocol variations.

For this test, it is assumed that the compound block can be found in the
exerciser’s internal memory, beginning with line 0. The block is to be
transferred to a memory block in the system memory, beginning with the
starting address B8000\h. The system is assumed to provide a 32-bit PCI
bus.

During the transfer, the following protocol variations should occur:

Variations Variation Parameter Allowed Values

Block Variations address alignments (%16=0)
(%16=4)
(%16=8)
(%16=12)
(%32=0)

blocksizes (in bytes) 4
8
16

bus commands 7 = Memory Write
15 = MWI

Master Attributes last (burstlength)
group: ML

4
8
32

waits
group: MD0

0
1
3
8

steps
group: MA1

0
7

tryback
group: MA1

true
false
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 183

Using the PPR Example Test Design
Permutations to be Covered Different testing areas must be covered during the example test:

• Block Variation Permutations (testing area BLOCK)

The following permutations of block variation parameters (address
alignments, blocksizes, bus commands) are required:

– each address alignment must occur

– each blocksize must occur

– each blocksize must start at each address alignment at least once

– transfers must be executed with and without MWI (with MWI, if it is
possible)

• Master Attribute Permutations (testing area MATTR)

The following permutations of master attributes (burstlengths, waits,
steps, tryback) are required:

– each burstlength must occur

– each count of wait cycles must occur

– each count of steps must occur

– transfers must occur with and without tryback

– each count of wait cycle must be combined with each burstlength

– steps must be combined with tryback to ensure that back-to-back is
tried at least once

• Testing Area ALL

For this testing area, each block variation permutation must meet
each master attribute permutation at least once.
184 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Example Test Design Using the PPR
The following table summarizes the permutations required for this
example.

Resource Constraints Resource constraints are determined by the resources of the PCI
Exerciser and Analyzer testcard available at the moment the test is run.
For this example the following is assumed:

• A maximum of 60 blocks may be allocated.

This means that the master block page size can hold a maximum
number of 60 blocks (Master Block Page Size MBPS = 60).

• A maximum of 49 lines in the master attribute page may be allocated.

This means that the Master Attribute Page Size (MAPS) must be less
than 49 attribute lines.

• The total testing time must be less than 100 ms, neglecting an initial
programming overhead.

Once specified, the programming overhead and other system
parameters are reused and do not need to be reinitialized.

• The compound blocksize (CBS) is 64 dwords = 256 bytes. (This value
should always be a power of two.)

• The cacheline size is 16 bytes (4 dwords).

The cacheline size of 16 bytes has been chosen in order to keep the
example short. Modern systems of today have a cacheline size of 32
bytes.

Testing Area Requirements Tuple

BLOCK All address alignments occur. (alignment)

All blocksizes occur. (blocksize)

Transfers with and without MWI . (commands)

Blocks of all sizes start at all
alignments.

(blocksize, alignment)

MATTR All burstlengths occur. (burst)

All numbers of wait cycles occur. (wait)

Steps 0 and 7 must occur. (steps)

Tryback occurs at least once or not
at all.

(tryback)

All counts of wait cycles meet all
positions of all bursts of 4, 8, and 32
dwords.

(burst, wait)

Steps = 0 must meet tryback = 1 at
least once.

(steps, tryback)

ALL All desired block permutations meet
all desired master attribute
permutations.

(BLOCK, MATTR)
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 185

Using the PPR PPR Administration
A more exhaustive test would use nearly all hardware resources of the
exerciser. This test case is more closely considered in “Further Options

and Possibilities” on page 229.

NOTE How to program the desired permutations and how to get the test results
can be found in the following sections.

The complete implementation of this example can be found under
“Example: Using the PPR” on page 23.

PPR Administration

Before the PCI PPR software can be used, the testcard and its
connections have to be initialized. See “Programming the Framework”

on page 27.

After the Exerciser and Analyzer software has been initialized, the PPR
software must be initialized and generic properties, such as bus speed or
bus width, can be set.

After using the PPR software, the allocated memory must be freed before
the Exerciser and Analyzer software is terminated.

See “Functions Overview” on page 187.
186 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

PPR Administration Using the PPR
Functions Overview
The following figure shows the generic setup functions used to initialize
and deinitialize the PCI Protocol Permutator and Randomizer software
and for getting and setting general properties.

Programming Steps Setting up the test program requires the following steps:

1 Initialize the Exerciser and Analyzer testcard.

See “Connection and Initialization” on page 28.

2 Initialize the PPR software by setting all properties of this software to
default values.

Use BestPprInit.

3 Set general properties, such as PCI bus speed and bus width, the
expected number of clocks per data transfer and a random seed.

Use BestPprGenPropDefaultSet and BestPprGenPropSet.

Use BestPprGenPropGet to read the settings.

4 At the end of the test, free all memory allocated by the software.

Use BestPprDelete.

Generic
Properties
–BusSpeed
–BusWidth
–Seed
–XFERCLKS

BestPprGenPropSet()

BestPprGenPropDefaultSet()

BestPprGenPropGet()

Memory
on

Testcard

BestPprInit()

BestPprDelete()
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 187

Using the PPR PPR Administration
Example
Task Perform the general setup for your test program as follows:

• The master attributes should cycle through their values sequentially,
independent of whether or not a new master block page starts. To
perform this, set the corresponding general master property.

• The system is assumed to provide a 32-bit PCI bus.

Implementation /* Request the session handle needed in all following functions and
open the connection to the control PC via Fasthost interface. */

status = BestOpen(&handle, B_PORT_PARALLEL,
B_PORT_LPT1); CHECK;

/* Initialize the software by specifying a general property so that
the master attributes cycle through their values sequentially,
independent of whether or not a new master block page starts. */

status = BestMasterGenPropSet(handle,
B_MGEN_ATTRMODE,
B_ATTRMODE_SEQUENTIAL); CHECK;

/* Initialize the PCI Protocol and Randomizer software. */
status = BestPprInit(handle); CHECK;

/* Set the generic PPR property buswidth to 32 bit. */
status = BestPprGenPropSet(handle, BPPR_GEN_BUSWIDTH, 32);
CHECK;

/* Insert the application program here. */

/* … */

/* Deinitialize the PCI Permutator and Randomizer software. */

status=BestPprDelete(handle); CHECK;

/* Terminate the BEST software. */

status=BestClose(handle); CHECK;

}

188 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming Master Block Permutations Using the PPR
Programming Master Block
Permutations

This section describes how a block transfer is prepared and explains the
properties important for the block transfer and the permutations.

NOTE For more information on blocks, please refer to “Master Block Transfer

Memory Programming” on page 85.

Block A block is a contiguous range in the memory that is to be transferred
with one single command. This transfer, however, is always initiated by
a master and may require multiple bursts to complete, due to the
master’s intention, target termination, or an intervention of the arbiter.

Compound Block The PCI Permutator and Randomizer software combines a multiple
number of blocks into a compound block, which contains a series of
block transfers. The blocks reside within a contiguous range in memory,
for example corresponding to the memory range of the system under test
(or a part of its memory range).

Block Page The individual blocks of the compound block can be executed in any
order. The information on the order in which the block transfers are
performed is contained in a block page (a page of the block transfer
memory) on the testcard.

The following figure shows an example of the memory transfer concept.
On the testcard, there is a block page and a compound block of 4 blocks,
prepared for transfer from the testcard’s internal memory to the memory
of the system under test.

Memory of the
DeviceUnder

Test
Internal
Memory

2
4
3
1

0 200000h

Block
Page

PCI Bus

1
2
3
4

2
4
3
1

Testcard

Compound
Block
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 189

Using the PPR Programming Master Block Permutations
The PCI Protocol Permutator and Randomizer software internally
permutates the different variation parameters of these blocks against
each other to compute the required block page size, the last possible
permutation using the specified block page size, and the estimated
testing time. On demand, the block page can then be generated and
downloaded to the testcard. The testcard can generate the traffic by
executing that block page.

Block permutation properties and variation parameters are described in
the following subsections.

Block Permutation Properties Block permutation properties define the intention of the compound
block. The following properties can be set:

Transfer Direction The transfer direction is seen from the master’s
side:

– write from internal memory to system memory

– read from system memory into internal memory

Compound Block Size The compound blocksize (CBS) specifies
the size of the compound block in dwords. The permutation algorithm
fits the blocks into this compound block according to the required block
variation constraints.

NOTE It is recommended that the compound blocksize is set to a power of 2.

Dual Address Cycles Forces the Exerciser and Analyzer to use dual
address cycles when used in a 64-bit system.

Bus Address The bus address is the starting address in the PCI
memory range of the system under test to which the compound block
will be transferred, or from which it will be read.

WARNING Allocate the required memory in your test program. Writing directly into
system memory passing by the operating system may cause a serious
system crash.
190 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming Master Block Permutations Using the PPR
Internal Address The internal address is the starting address in the
memory range of the Agilent E2925B testcard to which the compound
block will be transferred, or from which it will be read.

NOTE The PCI Protocol and Randomizer software does not fill up memory with
data. This can be done by appropriate standard C-API functions. See
“Data Memory and Compare Unit Programming” on page 142.

Attribute Page This property specifies a master attribute page,
which is then used for the compound block transfer.

Compare Flag and Compare Offset If the compare flag is set, a
compound block being read is compared with a data block found at the
location specified by the compare offset. The result is stored in the
testcard’s status register.

Refer to “b_blkproptype” described in the Agilent E2925B Opt. 320

C-API/PPR Reference for detailed information on use and ranges of the
compare flag and offset.

Master Block Page Size (MBPS) This property specifies the
maximum number of blocks a compound block can contain.

First Permutation Number This value is used to start the
permutation algorithm with a certain value. It can be used to continue a
permutation if a previous permutation had to be interrupted, for
example, because of an overflowing attribute page.

Fill Gaps This boolean value determines whether or not gaps
between blocks in the compound block are filled after fitting in block
permutations. Filling these gaps ensures that the whole compound block
will be transferred. However, to fill the gaps, all address alignments and
byte enable values will be used, not just the values specified for these
parameters.

Block Variation Parameters Block variation parameters specify how the compound block is to be
intensified by permutated variations of parameters, such as blocksize or
alignment.

These parameters can be constrained to design a test scenario according
to the testing requirements. To constrain a parameter, a list of values to
be permutated and an algorithm for picking the values from the list can
be specified. The algorithm selects values either at random or
sequentially.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 191

Using the PPR Programming Master Block Permutations
For the selection of bus commands, special algorithms are available.
These algorithms either select the best suitable command or the next
command in the list, taking into account recommendations of the PCI
specification and always considering the other variation parameters.

For more information about these algorithms, refer to
“bppr_algorithmtype” in the Agilent E2925B Opt. 320 C-API/PPR

Reference.

The following block variation parameters are available:

Start Address Alignment A list of arbitrary start address
“alignments” can be specified. An alignment consists of a value for
address granularity and a value for the offset within this granularity. This
allows block transfers to start at certain offsets relative to certain
address granularities, for example, start one dword after a 32-byte
boundary (%32=4).

The granularity could, for example, correspond to the cacheline size of
the system under test.

Block Size A list of blocksizes can be specified in bytes.

Byte Enables A list of byte enables can be specified to occur in the
data phase of the block transfer.

If some byte enables are not active in one block and the “Fill Gaps”
property is set, another block will be transferred with these byte enables
set active.

Bus Commands A list of PCI bus commands can be specified. All PCI
bus commands may be specified, but only those commands that are
suitable for the specified transfer direction will be used for variations.

The use of the MWI (Memory Write and Invalidate) command is restricted
by the PCI specification. Optionally, the use of the extended memory
commands MRL (Memory Read Line) and MRM (Memory Read Multiple)
can also be restricted to PCI recommendations.

Coverage The software computes whether all blocks required for the permutations
fit into the specified compound block. Coverage is achieved if all
possible permutations are covered after all blocks in the compound
block have been transferred. The result of this computation can be
written to a report.

The coverage of the master block permutation depends on the number of
variation parameters examined, the PCI bus commands used, and the
algorithm that selects the parameter combination for each permutation
step.
192 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming Master Block Permutations Using the PPR
Calculations of Coverage The following table describes the scheme used by the software to
determine the coverage of the variation list containing an extended
command.

Available Algorithms The software provides the following algorithms:

RAND The randomizing algorithm picks commands from the list at
random without eliminating duplicate tuples. Therefore coverage can
never be guaranteed. The MWI command is replaced by the “memory
write” command (MW), if it had to be used in an invalid parameter
combination.

PERM The permutating algorithm picks one command after the other
from the list and combines them with the other parameters, regardless of
whether the command is suitable or not. The MWI command is replaced
by the “memory write” command (MW), if it had to be used in an invalid
parameter combination.

RECOMM This algorithm combines a parameter combination only
with commands recommended by the PCI specification.

BEST This algorithm combines only the best suitable command with
the parameter combination. This effect is the same as if the list only
contained one command.

Algorithm

Direction RAND PERM RECOMM BEST

READ No coverage can be
guaranteed

Coverage =

Repetition length of
commands in the list,
raised up to the next
prime

Coverage =

Repetition length of
the recommended
commands in the list,
raised up to the next
prime

×

Repetition length of
the influencing
parameters, raised
up to the next prime

Coverage =

Repetition length of
the influencing
parameters, raised
up to the next prime

WRITE Coverage =

Repetition length of
all commands in the
list, raised up to the
next prime

×

Repetition length of
the influencing
parameters, raised
up to the next prime
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 193

Using the PPR Programming Master Block Permutations
To compute the coverage information, the software works through the
specified block variation parameters, through all of their allowed values,
and creates a block with each parameter combination. Illegal
combinations are replaced by legal ones. Because these valid
combinations may have occurred before, this may produce duplicate
combinations. Such duplicates will be skipped automatically.

NOTE For basic information see “Generating Permutations” on page 178.

After a number of blocks (variation list length N), duplicate blocks would
be created. Thus, a block property is covered after N data transfers. For
example, two data transfers are required to test a block that consists of
two address alignment values.

The number of data transfers needed to guarantee that each block
property value is calculated by multiplying the number of values of each
property. For example, to combine 5 address alignments with 3
blocksizes, 5 × 3 = 15 data transfers (blocks) are required.

If the bus command variations contain extended memory commands,
their values must permutate against each block variation parameter. The
software considers this by calculating the repetition length R from the
variation list lengths N of both these commands and the referring block
variation parameters. The repetition length can be reduced by selecting
the “best” algorithm, which picks only the best command (according to
PCI specification) from the value list and ignores all the remaining ones.

The variation list lengths N and repetition lengths R can be queried or
can be found in the report.

NOTE The calculated test coverage only indicates which protocol permutations
are intended to be used. The device under test will be exposed to all
permutations, but it cannot be guaranteed that a transfer will take place
using each permutation (for example, due to specific device
characteristics—or malfunctions).

Testing Time The testing time required to execute the compound block on the testcard
can be printed to the report. It consists of the compound block size
multiplied by the time needed per data transfer.

Contribution Testing Time

Master Block Permutation Testing Time CBS × Time-per-data-transfer
194 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming Master Block Permutations Using the PPR
Functions Overview
The following figure shows the master block and the report functions
used to prepare and to perform a master block permutation.

Programming Steps Programming master block permutations requires the following steps:

1 Prepare a permutation by setting the block permutation properties
(for example, transfer direction, bus address and internal address).

Use BestPprBlockPermPropSet.

2 Define lists of values for the variations and select the algorithm used
to pick the values from this list.

Use BestPprBlockVariationPropSet.

These lists specify values for the block variation parameters to be
permutated according to the testing requirements. Block variation
parameters are alignment, blocksize, values of the C/BE lines in the
data phase and block commands.

3 If you want to check whether your test requirements are really
suitable, request the test results or coverage.

Use BestPprBlockResultGet and BestPprBlockCoverageGet.

Variations
ValueConstraints
per Variation
Parameter

Permutation
Properties
– direction
– blocksize
– intaddr
– busaddr

Report
Properties
– Report Parts
– List Lengths

BestPprBlockPermPropSet()

BestPprBlockPermPropGet()

BestPprBlockVariationPropSet()

BestPprBlockVariationPropGet()

BestPprReportPropSet()

BestPprReportPropGet()

BestPprBlockGenerate()

BestPprBlockResultGet()
BestPprBlockCoverageGet()

BestPprReportWrite()
BestPprReportFile()

1
2
3
4

Block Page
on

Testcard

Report
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 195

Using the PPR Programming Master Block Permutations
4 Perform the permutation.

There are two ways to do this:

– A master block page can be generated and downloaded to the
testcard where it can be run using the standard C-API functions.

Use BestPprBlockGenerate and BestMasterBlockPageRun.

– The permutation results can be requested from the PCI Protocol
Permutator and Randomizer software. Adjusted properties and
permutation results can then be written to a report file.

Use BestPprReportWrite or BestPprReportFile.

NOTE The contents of the report file can be controlled with
BetPprReportPropSet and BetPprReportPropGet.

Example
Task Program master block permutations as follows:

• Prepare the block transfer by setting the following block permutation
properties:

– The compound block can be found in the exerciser’s internal
memory, beginning with line 0.

– The block is to be transferred to a memory block in the system
memory, beginning with the starting address B8000\h.

– A maximum of 60 blocks may be allocated.

This means that the master block page size can hold a maximum
number of 60 blocks (Master Block Page Size MBPS = 60).

– Master attribute page 2 is to be used.

– The total testing time must be less than 100 ms, neglecting an initial
programming overhead.

Once specified, the programming overhead and other system
parameters are reused and do not need to be reinitialized.

– The compound blocksize (CBS) is 64 dwords = 256 bytes. (This
value should always be a power of two.)

– The cacheline size is 16 bytes (4 dwords).

The cacheline size of 16 bytes has been chosen in order to keep the
example short. Modern systems of today have a cacheline size of 32
bytes.
196 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming Master Block Permutations Using the PPR
• Define the following value lists for block variations that should occur
during the transfer, and select the algorithm that picks all values one
after the other as listed in the value list:

• Ensure that the following permutations are covered:

Implementation /* Set the transfer direction to “write”. */

status = BestPprBlockPermPropSet(handle,

BPPR_BLK_DIR,

BPPR_DIR_WRITE); CHECK;

/* Set the bus address to B8000\h. */

status = BestPprBlockPermPropSet(handle,

BPPR_BLK_BUSADDR,

0x0b8000); CHECK;

/* Set the internal memory first line to 0. */

status = BestPprBlockPermPropSet(handle, BPPR_BLK_INTADDR, 0
); CHECK;

/* Set the compound blocksize (the number of dwords in the block)
to 64. */

status = BestPprBlockPermPropSet(handle, BPPR_BLK_NOFDWORDS, 64);
CHECK;

/* Select the master attribute page 2. */

status = BestPprBlockPermPropSet(handle, BPPR_BLK_ATTRPAGE, 2);
CHECK;

Variations Variation Parameter Allowed Values

Block Variations address alignments (%16=0)
(%16=4)
(%16=8)
(%16=12)
(%32=0)

blocksizes (in bytes) 4
8
16

bus commands 7 = Memory Write
15 = MWI

Testing Area Requirements Tuple

BLOCK All address alignments occur. (alignment)

All blocksizes occur. (blocksize)

Transfers with and without MWI . (commands)

Blocks of all sizes start at all
alignments.

(blocksize, alignment)
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 197

Using the PPR Programming Master Block Permutations
/* Select block page 1, which contains a maximum of 60 blocks. */

status = BestPprBlockPermPropSet(handle, BPPR_BLK_PAGENUM, 1);

CHECK;

status = BestPprBlockPermPropSet(handle, BPPR_BLK_PAGESIZEMAX, 60);
CHECK;

/* Set the system cacheline size to 4 dwords. */

status = BestPprBlockPermPropSet(handle, BPPR_BLK_CACHELINE, 4);
CHECK;

/* Set block variation properties according to the test design
(testing area BLOCK). Each of them should use the algorithm “perm”.
(For permutation, this algorithm picks the values from the value
lists in the order in which they appear.) */

/* Specify the alignment values. */

status = BestPprBlockVariationSet(handle,
BPPR_BLK_ALIGN,
"(%16=0), (%16=4), (%16=8), (%16=12), (%32=0)",
BPPR_ALG_PERM); CHECK;

/* Specify the blocksize values. */

status = BestPprBlockVariationSet(handle,
BPPR_BLK_SIZE,
"4,8,16",
BPPR_ALG_PERM); CHECK;

/* Specify the block commands Memory Write (7) and MWI (15). */

status = BestPprBlockVariationSet(handle,
BPPR_BLK_CMDS,
"mem_write, mem_writeinvalidate",
BPPR_ALG_PERM); CHECK;

/* After setting up these parameters, generate the block and
download it to the testcard. Note, if you first want to check
whether your test requirements are really suitable, you can request
the test results or coverage. In this case, first skip the
following line, and add it after you have checked and corrected
your test scenario. */

status = BestPprBlockGenerate(handle); CHECK;
198 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming Master Attribute Permutations Using the PPR
Programming Master Attribute
Permutations

The master attributes can be constrained and permutated in the same
way as the block variation parameters described above. The result can
be downloaded to a master attribute page on the testcard. The size of the
master attribute page (MAPS) is determined by the master attribute
group with the most memory lines and is selectable within the range
limited by the exerciser.

Master Attributes To achieve more sophisticated randomization opportunities, the master
attributes are divided into groups, which are varied against each other.
The following tables show which attributes are assigned to which group:

Variation Parameters A list of values and the algorithm for picking the values from the list can
be specified for every master attribute.

The burstlength determined by the attribute Last of group ML is of special
interest, because each burst starts with an address phase followed by as
many data phases as determined by the burstlength. On the attribute
page, the attribute LAST is boolean and is set to 1 in the last data phase of
a burst.

If another attribute permutates against burstlength, it is considered to be
completely permutated, if all of its values have occurred at all positions
in all bursts of all specified burstlengths.

Group Address Phase Attributes

MA0 Delay (Exerciser Idle)

MA1 Try “Fast Back-to-Back”, Steps

MA2 64 Bit Request, Release Request

MA3 Resume Delay

MA4 Wrong parity signalling, parity and system errors

Group Data Phase Attributes

MD0 Waits

MD1 Parity and system errors

MD2 Wrong parity signalling

Group Control Attributes

ML Last
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 199

Using the PPR Programming Master Attribute Permutations
To ensure that all burstlengths are used, the generated master attribute
page must be run with a block greater than the total of all listed
burstlengths. Otherwise a burst could be interrupted before the end of
the block.

NOTE A burstlength of one cannot be avoided totally.

Coverage To get the coverage result, the master attributes are first permutated
against required attributes within their own group. The resulting
repetition length is increased to the next higher unoccupied prime
number greater than 2—the prime number 2 is skipped to obtain an odd
master attribute page size.

NOTE For an explanation of how the permutations are generated, refer to
“Generating Permutations” on page 178.

Additionally, the master attributes of the MA group (address phase
attributes) require permutation against ML (the burstlength LAST). The
algorithm considers this when computing the coverage of the master
attribute permutation.

Finally, the algorithm computes the number of data transfers required to
achieve complete coverage by internally permutating the attribute
groups against each other.

The repetition lengths per group and the coverage information per
group and per group combination (tuples) can be found in the report.
The algorithm also calculates how many block runs are needed to cover
all required combinations, and determines the amount of data to be
transferred. Additionally, this information can also be queried using
C-API functions.

Testing Time The testing time is determined by the number of PCI data transfers
resulting from the number of groups and their lines to be permutated in
the master attribute memory.

Test Area Testing Time

T(MATTR) Number of data transfers × Time-per-data-transfer
200 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming Master Attribute Permutations Using the PPR
Block vs. Master Attribute
Permutation

The master block parameters can be permutated against master
attributes. Master attributes are permutated through their values when a
compound block is executed repeatedly.

After the compound block has been completely executed with each
master attribute group combination, all permutated block variation
properties have been permutated against all permutated master
attributes. The algorithm calculates how many block runs are needed to
cover all required master attributes and their combinations and the
amount of data to be transferred.

If the compound blocksize has been set to a power of 2, it is ensured that
all permutated block variation properties have permutated against all
permutated master attributes.

Testing Time The testing time is determined by the testing time for the master block
permutations and the number of master attribute permutations.

Functions Overview
The following figure shows the master attribute and report functions
used to prepare and to perform the permutation of the master attributes.

Test Area Testing Time

T(ALL) T(BLOCK) × Number of Attribute Permutations

Variations
- Value

Constraintsper
variation

parameter

Permutation
Properties

Resources

Report
Properties

- report
parts- list

lengths

BestPprMAttrPermPropSet()

BestPprMAttrPermPropGet()

BestPprReportPropSet()

BestPprReportPropGet()

BestPprMAttrGenerate()

BestPprMAttrResultGet()
BestPprMAttrCoverageGet()

BestPprReportWrite()
BestPprReportFile()

Variations
ValueConstraints
per Variation
Parameter

Permutation

Properties

Resources

Report
Properties

–Report Parts
–List Lengths

BestPprMAttrVariationSet()

BestPprMAttrVariationGet()

Master
Attribute

Page
on

Testcard

Report
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 201

Using the PPR Programming Master Attribute Permutations
Programming Steps Programming master attribute permutations requires the following steps:

1 Prepare a permutation by setting the permutation properties
according to the resource requirements.

Use BestPprMAttrPermPropSet.

Master attribute permutation properties are:

– the number of master attribute pages

– the maximum page size

– a starting point for the permutation algorithm

2 Define the lists of values for the variations and select the algorithm
used to pick the values from this list.

Use BestPprMAttrVariationSet.

These lists specify values for the master attribute to be permutated
according to the testing requirements.

3 If you want to check whether your test requirements are really
suitable, request the test results or coverage.

Use BestPprMAttrResultGet and BestPprMAttrCoverageGet.

4 Perform the permutation.

There are two ways to do this:

– A master attribute page can be generated and downloaded to the
testcard, where it is used when running the master block page.

Use BestPprMAttrGenerate.

– The permutation results can be requested from the PCI Protocol
Permutator and Randomizer software. The adjusted properties and
the permutation results can then be written to a report file.

Use BestPprReportWrite or BestPprReportFile.

NOTE The contents of the report file can be controlled with
BetPprReportPropSet and BetPprReportPropGet.
202 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming Master Attribute Permutations Using the PPR
Example
Program master attribute permutations as follows:

• Prepare the master attribute permutations by setting the following
master attribute permutation properties:

– Master attribute page 2 is to be used.

– A maximum of 49 lines in the master attribute page may be
allocated.

This means that the Master Attribute Page Size (MAPS) must be less
than 49 attribute lines.

• Define the following value lists for master attribute variations that
should occur during the transfer, and select the algorithm that picks
all values one after the other as listed in the value list.

• Ensure that the following permutations are covered: .

Variations Variation Parameter Allowed Values

Master Attributes last (burstlength)
group: ML

4
8
32

waits
group: MD0

0
1
3
8

steps
group: MA1

0
7

tryback
group: MA1

true
false

Testing Area Requirements Tuple

MATTR All burstlengths occur. (burst)

All numbers of wait cycles occur. (wait)

Steps 0 and 7 must occur. (steps)

Tryback occurs at least once or not
at all.

(tryback)

All counts of wait cycles meet all
positions of all bursts of 4, 8, and 32
dwords.

(burst, wait)

Steps = 0 must meet tryback = 1 at
least once.

(steps, tryback)

ALL All desired block permutations meet
all desired master attribute
permutations.

(BLOCK, MATTR)
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 203

Using the PPR Programming Master Attribute Permutations
Master Attribute Permutations /* Set the master attribute permutation properties according to the
test design (testing area MATTR). */

/* Select master attribute page number 2. This page may contain up
to 49 attribute lines. */

status = BestPprMAttrPermPropSet(handle,
BPPR_MA_PAGENUM, 2); CHECK;

status = BestPprMAttrPermPropSet(handle,
BPPR_MA_PAGESIZEMAX, 49); CHECK;

/* Set the parameters for the master attribute variation. */

/* Set the required burstlengths of 4, 8 and 32.*/

status = BestPprMAttrVariationSet(handle,
B_M_LAST,
"4, 8, 32",
BPPR_ALG_PERM); CHECK;

/* Specify the variation parameters wait, steps, and tryback. */

status = BestPprMAttrVariationSet(handle,
B_M_WAITS,
"0, 1, 3, 8",
BPPR_ALG_PERM); CHECK;

status = BestPprMAttrVariationSet(handle,
B_M_STEPS,
"0, 7",
BPPR_ALG_PERM); CHECK;

status = BestPprMAttrVariationSet(handle,
B_M_TRYBACK,
"true, false",
BPPR_ALG_PERM); CHECK;

/* Note that you enter only your values of interest, but the
software inserts 0-values until the number of values is a prime. */

/* After setting up these parameters, generate the master attribute
page and download it to the testcard. Again, you may first check
and correct your test scenario. */

status = BestPprMAttrGenerate(handle); CHECK;
204 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming Target Attribute Permutations Using the PPR
Programming Target Attribute
Permutations

The target attribute permutations are used when the test scenario
requires the Exerciser and Analyzer to be a PCI target. The target
attributes can be constrained and permutated, similarly to the block
variation or master attribute parameters described above. The results
can be downloaded to a target attribute page on the testcard. The size of
the target attribute page (TAPS) is selectable within the range limited by
the testcard.

NOTE Because the bus control is on the side of the master, testing block
permutations vs. target attribute permutations is not normally required.

Target Attributes To achieve more sophisticated randomization opportunities, the target
attributes are divided into groups that can be varied against each other.
The following tables show which attributes are assigned to which group.

This assignment is fixed and cannot be programmed or otherwise
changed.

Variation Parameters A list of values and the algorithm to pick the values from the list can be
specified for every target attribute.

Group Address Phase Attributes

TA0 64-bit Acknowledge
System error signalling

Group Data Phase Attributes

TD0 Waits

TD1 Termination, Parity and system errors
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 205

Using the PPR Programming Target Attribute Permutations
Coverage To get the coverage result, the target attributes are permutated as
follows:

1. They are permutated against required attributes within their own
group.

2. The resulting repetition length is raised up to the next higher
unoccupied prime number.

3. The algorithm computes the number of data transfers required to
achieve complete coverage by internally permutating the attribute
groups against each other.

The group repetition lengths and the coverage information can be found
in the report. Additionally they can be queried using a C-API function.

To guarantee that the target address phase attribute (attribute APERR in
group TA) is actually executed, it must meet an address phase.

This is ensured if the exerciser is accessed in one of the following ways:

• Only a burstlength of 1 (single cycle) is used.

In this case, each address phase is followed by one data phase.

• The address attribute is permutated against the target termination
attribute TERM, containing a retry (1) or disconnect (2).

In this case, the address attribute is followed by a retry or disconnect,
and then meets the start of a new burst and thus a new address phase.

Testing Time The testing time is determined by the number of PCI data transfers
resulting from the number of groups and their lines to be permutated in
the target attribute memory.

Test Area Testing Time

T(TATTR) Number of data transfers × Time-per-data-transfer
206 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Programming Target Attribute Permutations Using the PPR
Functions Overview
The following figure shows the target attribute functions and the report
functions used to prepare and perform the permutation of the target
attributes.

Programming Steps Programming target attribute permutations requires the following steps:

1 Prepare the permutation by setting the permutation properties
according to the resource requirements.

Use BestPprTAttrPermPropSet.

Target attribute permutation properties are:

– the number of the target attribute page

– the maximum page size

– a starting point for the permutation algorithm

2 Define the lists of values for the variations and select the algorithm
used to pick the values from this list.

Use BestPprTAttrVariationSet.

These lists specify values for the target attributes to be permutated
according to the testing requirements.

3 If you want to check whether your test requirements are really
suitable, request the test results or coverage.

Use BestPprMAttrResultGet and BestPprMAttrCoverageGet.

Variations
ValueConstraints
per Variation
Parameter

Permutation

Properties
Resources

Report

Properties
–Report Parts
–List Lengths

BestPprTAttrPermPropSet()

BestPprTAttrPermPropGet()

BestPprTAttrVariationSet()

BestPprTAttrVariationGet()

BestPprReportPropSet()

BestPprReportPropGet()

BestPprTAttrGenerate()

BestPprTAttrResultGet()
BestPprTAttrCoverageGet()

BestPprReportWrite()
BestPprReportFile()

Target
Attribute

Page
on

Testcard

Report
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 207

Using the PPR Programming Target Attribute Permutations
4 Perform the permutation.

There are two ways to do this:

– A target attribute page can be generated and downloaded to the
testcard, where it determines the protocol level behavior of the
testcard as a target.

Use BestPprTAttrGenerate.

– The permutation results can be requested from the PCI Protocol
Permutator and Randomizer software. The adjusted properties and
the permutation results can then be written to a report file.

Use BestPprReportWrite or BestPprReportFile.

NOTE The contents of the report file can be controlled with
BetPprReportPropSet and BetPprReportPropGet.

Example
In general, the setup of the C code for programming target attribute
permutations takes place in the same way as described for master
attribute permutations.

Refer to “Example” on page 203 for programming master attribute
permutations.
208 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Generating PPR Reports Using the PPR
Generating PPR Reports

The report contains the following information:

• Creation date and time

• Generic PPR properties

• Block permutations

• Master attribute permutations

• Target attribute permutations

• Information on master block vs. master attribute permutation

• Report properties

• C-API abbreviations

• Tables of:

– Block permutation

– Master attribute permutation

– Target attribute permutation

• Hints and Warnings

For more information, refer to “Hints and Warnings in the Report

String” in the Agilent E2925B Opt. 320 C-API/PPR Reference.

The contents of the report can be limited by setting report properties.
For a list of constraints, refer to “bppr_reportproptype” in the
Agilent E2925B Opt. 320 C-API/PPR Reference.

The report can be generated and written into a specified file.

The program generated for “Example Test Design” on page 183 can be
found in “Analyzing the Report” on page 213.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 209

Using the PPR Generating PPR Reports
Functions Overview
The following figure shows the report functions used to prepare all kind
of permutations and to view the test results.

Programming Steps Programming the report functions requires the following steps:

1 Control the contents of the report file. For the list of available
properties, see “bppr_reportproptype” in the Agilent E2925B Opt.

320 C-API/PPR Reference.

Use BetPprReportPropSet and BetPprReportPropGet.

2 Request the permutation results from the PCI Protocol Permutator
and Randomizer software and write all adjusted properties and the
permutation results to a report file.

Use BestPprReportWrite or BestPprReportFile.

Example
Task Request a report that contains all test information except the target

attributes. That means that the report of target attribute permutations
and the report of the maximum number of target attribute page lines
(starting with the first page line) must be skipped.

Setting Up the Report Properties /* Set up report properties and print a report to a file. */

/* Skip the reports of the target attributes because the example
test scenario is set up for master operation. */

status = BestPprReportPropSet (handle, BPPR_REP_TA, 0); CHECK;

status = BestPprReportPropSet (handle, BPPR_REP_TACONTENT, 0);
CHECK;

/* Generate the report and write it into the specified file. Note
that the report already contains the information on master block
vs. master attribute permutation being calculated by the algorithm.
The report generated by the program can be found in “Report
Listing” on page 232. */

status = BestPprReportFile(handle, "report.txt"); CHECK;

Report
Properties
–Report Parts
–List Lengths

BestPprReportPropSet()

BestPprReportPropGet()

BestPprReportWrite()
BestPprReportFile()

Report
210 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Running the PPR Test Using the PPR
Running the PPR Test

To run the PPR test, the PCI Permutator and Randomizer software is not
required. This is performed by the testcard’s exerciser run functions. To
analyze errors that occur during the test, the testcard’s analyzer
functions can be used.

Programming Steps Running a PPR Test requires the following steps:

1 Request the number of required block runs.

Use BestPprMAttrResultGet or BestPprTAttrResultGet accordingly.

2 Run the test by running the block page as often as required.

3 Check for protocol errors occurred during the test by reading the bits
in the testcard status register.

Use BestStatusRegGet.

NOTE The test is observed by the functions of the protocol observer for
protocol violations. The protocol observer is started automatically after
power up and is per default set up to check all rules. For more
information on the protocol observer, refer to “Protocol Observer

Programming” on page 47.

4 If protocol errors have occurred, read out the observer’r result
registers for information on the errors.

Use BestObsStatusGet.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 211

Using the PPR Running the PPR Test
Example
Task Run the test specified under “Example Test Design” on page 183 and

check for protocol errors.

/* Before running the test, request the number of required block
runs. */

status = BestPprMAttrResultGet(handle,
BPPR_MA_RUNS,
&blockruns);

/* Run the block page as often as required.*/

printf ("Running master %u times\n", blockruns);
for (count=0; count<blockruns; count++)
{

status = BestMasterBlockPageRun(handle, 1); CHECK;
do

{
status = BestStatusRegGet(handle, &status_reg); CHECK;
}

while (status_reg & 0x01);

if (status_reg & 0x80)
{
printf ("Test failed, master abort has occured!\n");
break;
}

}

/* If protocol errors have occurred, this is indicated by a bit in
the testcard’s status register. Read out the observer’s result
registers for information on the errors. */

if (status_reg & 0x10)
/* protocol error occured */
{
status = BestObsStatusGet (handle, B_OBS_ACCUERR,
&status_reg); CHECK;

printf("The following protocol errors have been detected:\n");
for (errbit=1; errbit<=0x010000000; errbit >>=1)
{
if (status_reg & errbit)
{
status = BestObsErrStringGet (handle, errbit, &errtext);
CHECK;
printf ("%s\n", errtext);

}
}
}

212 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Analyzing the Report Using the PPR
Analyzing the Report

This section contains a report created by the example C program,
assuming that no errors occurred during program execution. The
individual sections of the report are explained in detail. All reports
produced by the PCI Protocol Permutator and Randomizer software are
set up like this, unless some sections are suppressed by report property
settings. The results in these reports could also be queried by
C functions.

Report of C-API Abbreviations The report property “Report of C-API abbreviations” (BPPR_REP_CAPI),
was active during program execution. Therefore, the C-API names of
properties are given in brackets in each line. This information can be
used to easily find the referring properties in your C program.

The reports of target attribute permutations and target attribute table are
not considered in the example. These reports are similar to those of the
master attribute permutations and the master attribute table.

NOTE The order of the report sections listed here is not exactly the same as in
the real PPR report. For the exact order, see “Report Listing” on

page 232.

Report Header
The report starts with a header containing the creation date and time,
followed by general information.

Wed Mar 22 16:28:29 2000

Agilent E2975A PCI Protocol Permutator & Randomizer SW
==

HW Type .. E2926A
Connection Mode .. ONLINE

Generic Master Property (C-API)
Master Attribute Page Mode (B_MGEN_ATTRMODE) ... Sequential
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 213

Using the PPR Analyzing the Report
General Properties The general properties then follow, which are used to compute the
testing times and a series of pseudo random numbers.

Refer to “PPR Administration” on page 186.

Report of Block Permutations
Report of Master Block Permutation This section of the report deals with the master block permutation. It

shows which block and permutation properties are specified and which
variations are constrained to which values.

GENERIC PPR PROPERTIES
======================

Bus Speed (BPPR_GEN_BUSSPEED) 33 MHz
Bus Width (BPPR_GEN_BUSWIDTH) 32 bit
Clocks per data transfer (BPPR_GEN_XFERCLKS) 10
Seed (BPPR_GEN_SEED) 0

BLOCK PERMUTATION
=================

Block Properties
Bus address (B_BLK_BUSADDR) 000b8000\h
Transfer direction (B_BLK_DIR) Write
Internal address (B_BLK_INTADDR) 0\h
Compound block size (B_BLK_NOFDWORDS) 64
Attribute page number (B_BLK_ATTRPAGE) 2
Compare flag (B_BLK_COMPFLAG) 0
Compare offset (B_BLK_COMPOFFS) 0\h

Permutation Properties
Block page number (BPPR_BLK_PAGENUM) 1
Max. master block page size (BPPR_BLK_PAGESIZEMAX) .. 60
Master block first permutation .. (BPPR_BLK_FIRSTPERM) 1
Cacheline size in DWords (BPPR_BLK_CACHELINE) 4
Fill gaps (BPPR_BLK_FILLGAPS) yes

Variation constraints (N = actual variation list length)

Blocksize: perm, 3 values .. (BPPR_BLK_SIZE) N=3
"4,8,16"

Byten: fix (BPPR_BLK_BYTEN) N=1
"all"

Commands: perm, 2 values .. (BPPR_BLK_CMDS) N=2
"Mem_write,Writeinvalidate"

Alignment: perm, 5 values .. (BPPR_BLK_ALIGN) N=5
"(%16=0),(%16=4),(%16=8),(%16=12),(%32=0)"
214 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Analyzing the Report Using the PPR
Permutation Results The master block permutation section ends with the permutation results.

Block Permutation Testing Considerations
To understand the results in the table above, there are certain
restrictions to using the MWI command.

MWI Command Restrictions The use of the MWI command (PCI bus command 15) is restricted. The MWI
command can only be used under the following circumstances:

• alignment is a multiple of the cacheline size

• all byte enables are active (that is, low)

• blocksize is a multiple of the cacheline size

The MWI command must not appear in other permutations. It will
automatically be replaced by a non-disturbing memory command, so that
the permutation of other variation parameters is not affected. This may
result in duplicate entries in the permutation table. These duplicate
entries will be deleted.

NOTE In this example test, MWI and burstlength are permutated against each
other. This requires burstlength values greater or equal than cacheline
size to prevent bursts from being interrupted within a cacheline.
Therefore, in the example test the smallest burstlength to be permutated
equals the cacheline size, which is assumed to be 4 dwords.

For the example test, this results in the block permutation table.

Permutation Results

Last permutation (BPPR_BLK_LASTPERM) 30
Actual page size (BPPR_BLK_PAGESIZEACT) .. 26
Estimated testtime (BPPR_BLK_TIME) 19.394 us

Coverage: covered, when R <= 30 (Last Permutation)
(Blocksize) ... R=3 yes
(Commands) .. R=30 yes
(Alignment) ... R=5 yes
(Blocksize, Commands) R=30 yes
(Blocksize, Alignment) R=15 yes
(Commands, Alignment) R=30 yes
(Blocksize, Commands, Alignment) R=30 yes

Total testtime T(BLOCK) 19.394 us
Gaps between blocks 0 us
Data transfer time .. 19.394 us
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 215

Using the PPR Analyzing the Report
Block Permutation Table The block permutation table shows the permutations to be executed.
The tuple is given for each permutation. It is commented when the
command had to be replaced. This may happen due to a combination
with parameters. Duplicate tuples are also skipped.

The columns contain the permutation number, the blocksize transferred
with the permutation, the alignment used, the byte enable (always low
active) and the bus commands (7 or 15). The blocksizes of all valid
permutation numbers add up to 172 bytes. This is less than the allocated
compound blocksize of 64 dwords = 256 bytes. Thus there is a chance
that all permutation numbers will fit into the compound blocksize.

NOTE This explains why the PCI Permutator and Randomizer software varies
all parameters simultaneously. If it varied only one parameter from one
permutation to the next while fixing the remaining, it would be possible
that parameters are not varied at all, simply because they do not fit into
this table. The length of this table may be diminished due to resource
constraints.

Block Permutation Table
=======================

PermNum | Size Alignment Byten Command

1 | 4 %16= 0 0000\b 7
2 | 8 %16= 4 0000\b 15 (illegal-> 7)
3 | 16 %16= 8 0000\b 7
4 | 4 %16=12 0000\b 15 (illegal-> 7)
5 | 8 %32= 0 0000\b 7
6 | 16 %16= 0 0000\b 15
7 | 4 %16= 4 0000\b 7
8 | 8 %16= 8 0000\b 15 (illegal-> 7)
9 | 16 %16=12 0000\b 7
10 | 4 %32= 0 0000\b 15 (illegal-> 7)
11 | 8 %16= 0 0000\b 7
12 | 16 %16= 4 0000\b 15 (illegal-> 7)
13 | 4 %16= 8 0000\b 7
14 | 8 %16=12 0000\b 15 (illegal-> 7)
15 | 16 %32= 0 0000\b 7

Skip, same as 1 | 4 %16= 0 0000\b 15 (illegal-> 7)
Skip, same as 2 | 8 %16= 4 0000\b 7
Skip, same as 3 | 16 %16= 8 0000\b 15 (illegal-> 7)
Skip, same as 4 | 4 %16=12 0000\b 7
Skip, same as 5 | 8 %32= 0 0000\b 15 (illegal-> 7)

21 | 16 %16= 0 0000\b 7
Skip, same as 7 | 4 %16= 4 0000\b 15 (illegal-> 7)
Skip, same as 8 | 8 %16= 8 0000\b 7
Skip, same as 9 | 16 %16=12 0000\b 15 (illegal-> 7)
Skip, same as 10 | 4 %32= 0 0000\b 7
Skip, same as 11 | 8 %16= 0 0000\b 15 (illegal-> 7)
Skip, same as 12 | 16 %16= 4 0000\b 7
Skip, same as 13 | 4 %16= 8 0000\b 15 (illegal-> 7)
Skip, same as 14 | 8 %16=12 0000\b 7

30 | 16 %32= 0 0000\b 15
216 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Analyzing the Report Using the PPR
Another reason why the PCI PPR software changes all parameters
simultaneously is to achieve a good mix of test cases.

In the Block Permutation Table shown above, all block properties are
permutated independently according to their value lists.

All variation list lengths (N) of the properties are prime numbers. If they
were not, to calculate N, the software would raise them up to the next
unoccupied prime number (for an explanation of how repetition lengths
are calculated refer to “Generating Permutations” on page 178).

• N for commands “15, 7” = 2

• N for blocksizes “4, 8, 16” = 3

• N for address alignments “%16=0, %16=4, %16=8, %16=12, %32=0” = 5.

The repetition length R is the length between two permutations with
equivalent tuples. Thus, a block property has taken all values after R data
transfers. For example: Three data transfers are necessary to test the
three blocksizes.

The number of data transfers required to cover all combinations of block
property values is calculated by multiplying the numbers of values of
each property. For example: To combine all address alignments with all
blocksizes you need 5 × 3 = 15 data transfers. To combine all address
alignments with all commands and blocksizes, you need 2 × 3 × 5 = 30
transfers.

The following table shows how many block permutations are required to
permutate the block properties (the tuples and the whole testing area),
as required by the example test design:

For the commands, exceptions must be regarded. As described above,
the MWI command may be changed by the software to meet the PCI
specification. If this results in duplicate entries, these entries will be
skipped, thus reducing the number of transfers.

Tuple Repetition Lengths

(ALIGNMENT) 5

(BLOCKSIZE) 3

(COMMAND) 2 × 5 × 3 = 30

(ALIGNMENT, BLOCKSIZE) 5 × 3 = 15

(ALIGNMENT, COMMAND) 5 × 3 × 2 = 30

(BLOCKSIZE, COMMAND) 5 × 3 × 2 = 30

(ALIGNMENT, BLOCKSIZE,
COMMAND)

5 × 3 × 2 = 30

R(BLOCK) Max(5, 3, 30, 15) = 30
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 217

Using the PPR Analyzing the Report
If the number of permutations chosen is too small, it may occur that no
MWI command is executed, although it is required in the variation
parameter list. To avoid this situation, the MWI command must be
permutated against all parameters that could prevent the occurrence of
the MWI command. In the case of the example, these are both alignment
and blocksize. Thus, the repetition length of the command tuple must be
calculated as 2 × 3 × 5 = 30.

NOTE These considerations are only true for algorithms that are not able to
recognize the best command for a given tuple of variation parameters. If
you chose the “best” algorithm, it automatically selects the best suitable
command from the list. It then skips the permutations with other
commands in order to decrease the repetition length.

Block Fitting List The blocks contained in the block permutation table must be arranged to
fit into the compound block. The compound blocksize (CBS) is
determined by the resources. For the example test, it is assumed to be 64
dwords = 256 bytes.

Therefore, the algorithm sequentially steps through the block
permutation table and fits the individual permutations into the
compound block, regarding their alignment and size.

It proceeds by filling up the block by alternating from the start and from
the end of the block until all permutations are inserted. If some
permutations do not fit in, it terminates. The Master Block Last
Permutation (MBLP) can be queried, showing the number of the last
permutation fitted into the compound block.

The goal is to fit in as many permutations as possible. The FILLGAPS
property can be set to enable the filling of gaps remaining between
blocks with additional block transfers. This ensures that the compound
block will be transferred completely.
218 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Analyzing the Report Using the PPR
For the example test, the algorithm can fit all blocks into the compound
block of 256 bytes. All 30 block permutations fit in (master block last
permutation, MBLP = 30). Including the filled-in gaps, a total of 26 block
transfers are used. This page size is below the limit defined by the
maximum master block page size, which is 60 blocks in this example.
The block fitting list shows schematically how the blocks are fitted into
the compound block.

The report then produces the Block Fitting List, which shows the
compound block resulting from the rearrangement of the example test.

NOTE The length of the table printout may be restricted by the report
properties. Here 30 lines are reported, which is the default value.

Block Fitting List
==================

Actual Needed Size of Page: 26
First Permutation: 1

PermNum | Start Addr End Addr Size Alignment Byten Command
--

5 | 0x000b8000 0x000b8007 8 %32= 0 0000\b 7
13 | 0x000b8008 0x000b800b 4 %16= 8 0000\b 7

fill | 0x000b800c 0x000b800f 4
1 | 0x000b8010 0x000b8013 4 %16= 0 0000\b 7
7 | 0x000b8014 0x000b8017 4 %16= 4 0000\b 7
3 | 0x000b8018 0x000b8027 16 %16= 8 0000\b 7

fill | 0x000b8028 0x000b802b 4
9 | 0x000b802c 0x000b803b 16 %16=12 0000\b 7

fill | 0x000b803c 0x000b803f 4
15 | 0x000b8040 0x000b804f 16 %32= 0 0000\b 7
11 | 0x000b8050 0x000b8057 8 %16= 0 0000\b 7

fill | 0x000b8058 0x000b805f 8
30 | 0x000b8060 0x000b806f 16 %32= 0 0000\b 15

fill | 0x000b8070 0x000b808f 32
21 | 0x000b8090 0x000b809f 16 %16= 0 0000\b 7

fill | 0x000b80a0 0x000b80ab 12
14 | 0x000b80ac 0x000b80b3 8 %16=12 0000\b 7
12 | 0x000b80b4 0x000b80c3 16 %16= 4 0000\b 7

fill | 0x000b80c4 0x000b80cf 12
6 | 0x000b80d0 0x000b80df 16 %16= 0 0000\b 15
10 | 0x000b80e0 0x000b80e3 4 %32= 0 0000\b 7

fill | 0x000b80e4 0x000b80e7 4
8 | 0x000b80e8 0x000b80ef 8 %16= 8 0000\b 7

fill | 0x000b80f0 0x000b80f3 4
2 | 0x000b80f4 0x000b80fb 8 %16= 4 0000\b 7
4 | 0x000b80fc 0x000b80ff 4 %16=12 0000\b 7

Last fit permutation: 30 Fit completely!
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 219

Using the PPR Analyzing the Report
Summarizing the Results The results for coverage and testing time of the master attribute
permutations are described as follows.

Coverage In the example test, complete coverage is achieved. After
26 block permutations all required parameter combinations have
occurred at least once.

The following table shows the repetition length for each tuple and
whether it is covered after the Master Block Last Permutation (MBLP).
Thus the testing goal for the BLOCK testing area is achieved.

Testing Time In the example test, the block test is performed after
the 64 dwords (compound block size) have been transferred, that is after
the 26 block transfers in the example. Assuming an average of 10 clock
cycles for each of the 64 data transfers, less than 0.02 ms are needed for
the data transfer (clock is 33 MHz, that is 30.3 ns per clock cycle).

Tuple Repetition Length R Coverage

(ALIGNMENT) 5 yes

(BLOCKSIZE) 3 yes

(COMMAND) 30 yes

(ALIGNMENT, BLOCKSIZE) 15 yes

(ALIGNMENT, COMMAND) 30 yes (was not a goal)

(BLOCKSIZE, COMMAND) 30 yes (was not a goal)

(ALIGNMENT, BLOCKSIZE,
COMMAND)

30 yes (was not a goal)

R(BLOCK) Max(5,3,30,15) = 30 yes (goal achieved)

Testing Time Calculation Value

Total T(BLOCK) Data transfer time:

64 × 10 clocks × 30.3 ns

19.4 µs
220 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Analyzing the Report Using the PPR
Report of Master Attribute Permutation
This section reports the specified master attribute permutation
parameters.

Variation Constraints The following subsection shows the variation constraints for the master
attribute permutation. It is reported which attributes of each group are
permutated. Note that the repetition length of each group is raised up to
the next prime.

MASTER ATTRIBUTE PERMUTATION
============================

Permutation Properties
Page number (BPPR_MA_PAGENUM) 2
Max. page size (BPPR_MA_PAGESIZEMAX) ... 49
First permutation (BPPR_MA_FIRSTPERM) 1

Variation Constraints (R = Repetition Length)

Group MA0 ...(requires permutation against ML)............. R=1
DELAY: fix = "0"

Group MA1 ...(requires permutation against ML)............. R=5
STEPMODE: fix = "no"
STEPS: permutated, 2 values = "0,7"
TRYBACK: permutated, 2 values = "yes,no"

Group MA2 ...(requires permutation against ML)............. R=1
RELREQ: fix = "on"
REQ64: fix = "no"

Group MA3 ...(requires permutation against ML)............. R=1
RESUMEDELAY:fix = "10"

Group MA4 ...(requires permutation against ML)............. R=1
APERR: fix = "no"
AWRPAR: fix = "no"
DACWP: fix = "no"
DACPERR: fix = "no"
AWP64: fix = "no"
DACWP64: fix = "no"

Group MD0 ... R=7
WAITS: permutated, 4 values = "0,1,3,8"
WAITMODE: fix = "no"

Group MD1 ... R=1
DPERR: fix = "no"
DSERR: fix = "no"

Group MD2 ... R=1
DWRPAR: fix = "no"
DWP64: fix = "no"

Group ML .. R=47
BURSTLEN: permutated, 3 values = "4,8,32"
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 221

Using the PPR Analyzing the Report
In the example test design, three variation parameters have been
specified for the master attribute testing area: burstlength, waits, steps
and tryback (see “Permutations to be Covered” on page 184). The
burstlength is of particular interest.

The burstlength is determined by an attribute called LAST. This attribute
is set to 0 during a burst, and is set to 1 in the last data phase of a burst.
In the attribute page, LAST is set to 1 if the permutation is the last data
phase in the burst.

Required Blocksize In the example test design, 3 bursts are required, one with a length of
1 dword, the second with 2 dwords and a third with 4 dwords. To have
each burstlength occur at least once in the test, 4 + 8 + 32 = 44 data
phases are required.

To make sure that bursts are performed with the lengths as intended, the
master attribute page must be executed with a blocksize of at least the
total of all burstlengths. Otherwise an intended burst would be
interrupted by the end of the block. (Ideally, the used blocksize equals
the total of all burstlengths. If it does not, a hint is given in the report.)

The value of 44 is increased to 47 to achieve a prime number as
repetition length for coverage calculation.

Computing Repetition Lengths The repetition lengths are computed by the algorithm as described in
“Generating Permutations” on page 178.

To guarantee that all repetition lengths are distinct and have no common
factor, each individual length is raised up to the next distinct prime
number. This is necessary to prevent the algorithm from cycling through
permutations with equivalent tuples.

For the example test, the attributes of group MA1 (STEPS and TRYBACK)
have a group repetition length of 4. Therefore, the values 7 (STEPS) and 1
(TRYBACK) are filled in to obtain a repetition length of 5.

The attribute WAIT has 4 values as well, which must be increased to the
next unoccupied prime number. 5 is occupied by MA1, therefore, the
values 0, 0, 1 are filled in to increase the repetition length to 7.

The repetition length of group ML (BURSTLENGTH) is increased from
44 to 47.

NOTE 2 is not used in this algorithm as a repetition length, even though it is a
prime number. This guarantees that only attribute pages of odd lengths
are generated (which is necessary for permutating attributes against
blocks, see below).
222 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Analyzing the Report Using the PPR
The software first groups the attributes and performs a complete
permutation within the group each attribute belongs to (MA1, MD0, ML).
Afterwards each attribute is permutated through all of its possible
values, similar to the permutation of block properties.

Master Attribute Permutation Table After running the permutation algorithm, the attributes are permutated
as shown in the following report section. Note that only permutated (not
fixed) attribute parameters are listed..

The list shows the algorithm’s operating principles. (It is limited to the
first 30 permutations (of 1645 overall)).

NOTE Permutations 11 to 24 are skipped in this printout.

Only the varying parameters are included. The length of the table
printout may be restricted by the report properties. In the following
report section, 30 lines are reported, which is the default value.

Master Attribute Permutations
=============================
Actual Size of Page: 47
First Permutation: 1

| B

P | U T
e | R R
r | W S S Y
m | A T T B
N | I L E A
u | T E P C
m | S N S K

1 | 0 0 0 1
2 | 1 0 7 0
3 | 3 0 7 1
4 | 8 1 0 0
5 | 0 0 7 1
6 | 0 0 0 1
7 | 1 0 7 0
8 | 0 0 7 1
9 | 1 0 0 0

10 | 3 0 7 1

(Skipped)

25 | 8 0 7 1
26 | 0 0 0 1
27 | 0 0 7 0
28 | 1 0 7 1
29 | 0 0 0 0
30 | 1 0 7 1

Printout ends due to user setting (BPPR_REP_MACONTENT = 30).

End of report.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 223

Using the PPR Analyzing the Report
Master Attribute Permutation Results This subsection shows the master attribute permutation results and
whether coverage is achieved under the given circumstances (that is,
whether the repetition length of the tuple is below the specified page
size).

As for the block properties permutation, the algorithm used by the PPR
software ensures that all attributes will have taken all their values at
least once after R data phases, where R is the corresponding repetition
length of the attribute tuples.

The algorithm permutates all tuples simultaneously, for example, all
values are changed between two permutation steps (not only one value).

Calculating the Results The results of the master attribute permutations as shown in the report
section above are explained as follows.

Coverage The following table shows the maximum number of
permutations required by the example test design for the MATTR testing
area. This maximum of 47 entries of group ML fits into the master
attribute page, which was assumed to have a size of 49 entries.

Permutation Results
Actual Page Size (BPPR_MA_PAGESIZEACT) ... 47
Last permutation number (BPPR_MA_LASTPERM) 1645
Estimated testtime (BPPR_MA_TIME) 498.48 us
testtime for 3-tuples......... (BPPR_MA_TUPLES_TIME) ... 498.48 us

Coverage: (n/a means not covered)
(MA1) - requires ML R= 235
(MD0) ... R= 7
(ML) .. R= 47
(MA1, MD0) - requires ML R= 1645
(MA1, ML) ... R= 235
(MD0, ML) ... R= 329
(MA1, MD0, ML) .. R= 1645

Max. covered single group 235
Max. of covered pairs 1645
Max. of covered 3-tuples 1645

Testtime total (MATTR).. 498.48 us
Testtime (all 3-tuples, MATTR)............................... 498.48 us

Max. Data Transfer for all permutations (MATTR):........... 6.4258 Kbyte
Max. Data Transfer for all 3-tuples (MATTR):.............. 6.4258 Kbyte
Number of Block Page Runs needed for all permutations...... 26
Number of Block Page Runs needed for all 3-tuples......... 26
224 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Analyzing the Report Using the PPR
Note that the attributes of MA1 (STEPS and TRYBACK) have effect only in
address phases, and thus must be permutated against burstlength to
make sure that it is covered. (This applies to all master attributes of
group MA (master address phase attributes)).

Testing Time The example master attribute test is completed after
1645 data transfers. Assuming an average of 10 clock cycles per data
transfer at 33 MHz, this takes 498 µs.

In a 32-bit system, 1645 transfers means 6580 bytes (= 6.4258 Kbyte). In
this example, the compound blocksize is set to 64 dwords, that is 256
bytes. Therefore, to transfer all required bytes, the block must be run
26 times at least (6580 / 256 = 25.7).

Hints Furthermore in the master attribute permutation section, the report has
generated the following hint.

This hint informs you about the minimum block size of the master
attribute page. If the master attribute page blocksize is smaller than this
size, bursts will be aborted prematurely.

Tuple Attributes Repetition Length R Coverage

(ML) BURST 47 yes

(MD0) WAITS 7 yes

(MA1) STEPS, TRYBACK

(requires ML)

5 × 47 = 235 yes

(MA1, MD0) WAITS, STEPS, TRYBACK

(requires ML)

235 × 7 = 1645 yes

(MA1, ML) STEPS, tryback, BURST 5 × 47 = 235 yes

(MD0, ML) WAITS, BURST 7 × 47 = 329 yes

(MA1, MD0, ML) STEPS, TRYBACK, WAITS,
BURST

5 × 7 × 47 = 1645 yes

Testing Time Calculation Value

T(MATTR) = Data transfer
time

1645 transfers × 10 clocks ×
30.3 ns

498 µs

HINT: This master attribute page should be called with
a block size of at least 44 DWords to avoid shortened bursts.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 225

Using the PPR Analyzing the Report
Report of Master Block vs. Master Attribute
Permutation
The following lines in the report result from the calculation of the
complete testing time (test area ALL). This is the time it would take the
test to run so that each block is permutated with each master attribute.

Refer to “Block vs. Master Attribute Permutation” on page 201.

Calculating the Results The results of the master attribute permutations as shown in the report
section above are explained as follows.

First Warning The first warning is given because the largest
blocksize of 4 dwords is smaller than the sum of all burstlengths of 44
dwords. Thus it cannot be guaranteed that each blocksize will be
combined with each burstlength.

Second Warning The second warning appears because the MWI
command is permutated against burstlength. This requires burstlength
values greater than or equal to cacheline size to prevent transfers from
being interrupted within a cacheline. The warning is a reminder for you
to set up your test accordingly.

Testing Time For the testing area ALL, the block variation
parameters are permutated against the master attributes. Therefore, the
compound block is run repetitively while the master attribute group
pages cycle through until any combination has occurred once.

To prevent runs of the compound block from using equivalent master
attribute combinations, the compound blocksize (CBS) and the number
of master attribute permutations) are not allowed to have a common
divisor.

BLOCK VS. MASTER ATTRIBUTE PERMUTATION
======================================

WARNING: Burstlengths cannot be guaranteed, because
largest blocksize (4 DWords) is smaller than the
sum of all burstlengths (44).

WARNING: MWI bursts must have sizes of multiple cachelines.
Therefore make sure you use infinite burstlength
when generating attribute pages by PPR,
or set up your own attribute page so that a
LAST bit will not interrupt transfer within a cacheline!

Testtime T(ALL) = T(BLOCK) * No. of Attribute permutations.. 31.903 ms
Testtime T(Tuples) = T(Block) * 1645 31.903 ms
226 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Analyzing the Report Using the PPR
Therefore, CBS should have a power of 2 (here: 32 dwords). There is
always an odd number of master attribute permutations, because it is the
result of multiplied prime numbers above 2.

In the example test, all permutations are covered after the compound
block has been executed 1645 times.

Report of Report Properties
This section shows the report properties specified when this report was
created. The report properties can be set by the command
BestPprReportPropSet.

Testing Time Calculation Value

T(ALL) T(BLOCK) × Number of
Attribute permutations

= 19.4 µs × 1645

31.9 ms

REPORT
======

Properties
Print general properties (BPPR_REP_GEN) yes
Print block properties (BPPR_REP_BLK) yes
Print master attribute properties (BPPR_REP_MA) yes
Print target attribute properties (BPPR_REP_TA) no
Print report properties (BPPR_REP_REPORT) yes
Print block page lines........... (BPPR_REP_BLOCKCONTENT) . 30
Print master attr. page lines ... (BPPR_REP_MACONTENT) 30
Print target attr. page lines ... (BPPR_REP_TACONTENT) 0
Max. order of tuple listed (BPPR_REP_ORDER_TUPLES) . 3
Print C-language symbols (BPPR_REP_CAPI) yes
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 227

Using the PPR Analyzing the Report
Block Page Contents
This section shows how the block page is programmed by the
Permutator and Randomizer Software after use of the function
BestPprBlockGenerate.

Block Page Contents
===================

Size of Page: 26

BusAddr Command Byten NOfDWords IntAddr
--
0x000b8010 7 0000\b 1 0x00010
0x000b80f4 7 0000\b 2 0x000f4
0x000b8018 7 0000\b 4 0x00018
0x000b80fc 7 0000\b 1 0x000fc
0x000b8000 7 0000\b 2 0x00000
0x000b80d0 15 0000\b 4 0x000d0
0x000b8014 7 0000\b 1 0x00014
0x000b80e8 7 0000\b 2 0x000e8
0x000b802c 7 0000\b 4 0x0002c
0x000b80e0 7 0000\b 1 0x000e0
0x000b8050 7 0000\b 2 0x00050
0x000b80b4 7 0000\b 4 0x000b4
0x000b8008 7 0000\b 1 0x00008
0x000b80ac 7 0000\b 2 0x000ac
0x000b8040 7 0000\b 4 0x00040
0x000b8090 7 0000\b 4 0x00090
0x000b8060 15 0000\b 4 0x00060
0x000b800c 7 0000\b 1 0x0000c
0x000b8028 7 0000\b 1 0x00028
0x000b803c 7 0000\b 1 0x0003c
0x000b8058 7 0000\b 2 0x00058
0x000b8070 7 0000\b 8 0x00070
0x000b80a0 7 0000\b 3 0x000a0
0x000b80c4 7 0000\b 3 0x000c4
0x000b80e4 7 0000\b 1 0x000e4
0x000b80f0 7 0000\b 1 0x000f0
228 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Further Options and Possibilities Using the PPR
Further Options and Possibilities

The Protocol Permutator and Randomizer software provides further
options and possibilities that were not covered by the example scenario
and therefore have not yet been explained.

Optimizing Testing Time The testing time can be optimized by taking the following into account:

• Keep the burstlengths and the number of bursts small.

Very long bursts result in long data transfer times, even if they are
varied against each other or other parameters.

• Include short bursts in the variation list only if exactly these short
bursts are to be examined.

In most cases, short bursts are added to the block page automatically
in order to fill gaps, or to increase the number of bursts to a prime
number.

• Vary either burstlength or blocksize.

• Vary only attributes of interest.

• The algorithm chooses the best suitable PCI bus command.

General Tips Regard the following general tips:

• Avoid adding exceptions, such as asserting system errors to
permutations, if the system under test is unable to handle them.

• If the target terminates with a disconnect, it is not guaranteed that a
burst with a desired length has been covered.

For the coverage computations, it is assumed that it is sufficient to
know that the target would have been ready for a burst of that length.

• The test cannot guarantee the coverage of errors due to combination
of PCI protocol errors and internal states of the device under test.

However, the test can be used to stress the device under test with the
same permutation sequences multiple times, while the device under
test independently passes different internal states.

Presetting Values To avoid unexpected program behavior, default values can be set. These
values are preset after initialization of the PCI Permutator and
Randomizer software or parts of it by means of the ...Init functions.

After initialization, the default values can be set with the ...DefaultSet
functions.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 229

Using the PPR Further Options and Possibilities
Requesting Results In the example, the results are written to a report file only. The
application programming interface provides further possibilities to
request the following:

• particular permutation results (with ...ResultGet functions)

• repetition length and coverage of tuples (...CoverageGet)

• specified properties (...PropsGet)

• specified variation parameters (...VariationGet)

This information is also written to the report (unless it is suppressed by
the report properties settings).

Byte Enable Variation Byte enables can be varied like the other parameters, but note that if
FILLGAPS is activated, block transfers may be added to ensure that all
byte enables were used after the compound block was transferred. In
this case, variations of other parameters may be used with value
variations which, perhaps intentionally, were not specified.

More Exhaustive Test The example test uses greatly reduced hardware resources to keep the
example output short (report, tables). A more exhaustive test would use
nearly all the hardware resources of the exerciser testcard:

• The master block page size can hold a maximum number of 256 blocks
(Master Block Page Size MBPS = 256).

• For each of the nine master attribute groups, 250 entries can be
programmed to be permutated against each other. This results in up to
2509 (= 3.8 × 1021) attribute permutations (and therefore in a virtually
infinite test duration).

• The typical compound blocksize (CBS) is the half of the testcard’s
data memory (64 KBytes, that is 16K dwords), so that the other half of
the memory can be used for a read/write compare reference data.
Refer to “Data Compare Unit” in the Agilent E2925B Opt. 300 PCI

Exerciser User’s Guide.
230 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Further Options and Possibilities Using the PPR
Uncovered Permutations If the coverage of permutated tuples is not achieved (although it is
required), the report will contain a hint listing possible reasons. In most
cases, increasing the system resources will help.

If resources cannot be increased, you can try to take advantage of the
following properties provided by the PCI Permutator and Randomizer
software:

• ...LASTPERM, which contains the number of the last permutation that
could be covered.

• ...FIRSTPERM, which allows the setting of the number of the
permutation where the algorithm should start.

• ...PAGENUM, which allows assignment of different pages in the internal
memory.

These properties can be used to fill the different pages with attributes or
blocks. The algorithm can be set to continue where the previous
invocation stopped.

Reproducing Bus Errors If the bus hangs during execution of a block page, the function
BestMasterBlockStatusRead can be used to determine the last block that
was executed successfully.

This function returns the number of the block and the position in the
master attribute page used when starting execution of the block. This
information can then be used to restart the permutation algorithm with
new start values.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 231

Using the PPR Report Listing
Report Listing

This section contains the report of the example described in “Example

Test Design” on page 183.

Wed Mar 22 16:28:29 2000

Agilent E2975A PCI Protocol Permutator & Randomizer SW
==

HW Type .. E2926A
Connection Mode .. ONLINE

Generic Master Property (C-API)
Master Attribute Page Mode (B_MGEN_ATTRMODE) ... Sequential

GENERIC PPR PROPERTIES
======================

Bus Speed (BPPR_GEN_BUSSPEED) 33 MHz
Bus Width (BPPR_GEN_BUSWIDTH) 32 bit
Clocks per data transfer (BPPR_GEN_XFERCLKS) 10
Seed (BPPR_GEN_SEED) 0
232 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Report Listing Using the PPR
BLOCK PERMUTATION
=================

Block Properties
Bus address (B_BLK_BUSADDR) 000b8000\h
Transfer direction (B_BLK_DIR) Write
Internal address (B_BLK_INTADDR) 0\h
Compound block size (B_BLK_NOFDWORDS) 64
Attribute page number (B_BLK_ATTRPAGE) 2
Compare flag (B_BLK_COMPFLAG) 0
Compare offset (B_BLK_COMPOFFS) 0\h

Permutation Properties
Block page number (BPPR_BLK_PAGENUM) 1
Max. master block page size (BPPR_BLK_PAGESIZEMAX) .. 60
Master block first permutation .. (BPPR_BLK_FIRSTPERM) 1
Cacheline size in DWords (BPPR_BLK_CACHELINE) 4
Fill gaps (BPPR_BLK_FILLGAPS) yes

Variation constraints (N = actual variation list length)

Blocksize: perm, 3 values .. (BPPR_BLK_SIZE) N=3
"4,8,16"

Byten: fix (BPPR_BLK_BYTEN) N=1
"all"

Commands: perm, 2 values .. (BPPR_BLK_CMDS) N=2
"Mem_write,Writeinvalidate"

Alignment: perm, 5 values .. (BPPR_BLK_ALIGN) N=5
"(%16=0),(%16=4),(%16=8),(%16=12),(%32=0)"

Permutation Results

Last permutation (BPPR_BLK_LASTPERM) 30
Actual page size (BPPR_BLK_PAGESIZEACT) .. 26
Estimated testtime (BPPR_BLK_TIME) 19.394 us

Coverage: covered, when R <= 30 (Last Permutation)
(Blocksize) ... R=3 yes
(Commands) .. R=30 yes
(Alignment) ... R=5 yes
(Blocksize, Commands) R=30 yes
(Blocksize, Alignment) R=15 yes
(Commands, Alignment) R=30 yes
(Blocksize, Commands, Alignment) R=30 yes

Total testtime T(BLOCK) 19.394 us
Gaps between blocks 0 us
Data transfer time .. 19.394 us
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 233

Using the PPR Report Listing
MASTER ATTRIBUTE PERMUTATION
============================

Permutation Properties
Page number (BPPR_MA_PAGENUM) 2
Max. page size (BPPR_MA_PAGESIZEMAX) ... 49
First permutation (BPPR_MA_FIRSTPERM) 1

Variation Constraints (R = Repetition Length)

Group MA0 ...(requires permutation against ML)............. R=1
DELAY: fix = "0"

Group MA1 ...(requires permutation against ML)............. R=5
STEPMODE: fix = "no"
STEPS: permutated, 2 values = "0,7"
TRYBACK: permutated, 2 values = "yes,no"

Group MA2 ...(requires permutation against ML)............. R=1
RELREQ: fix = "on"
REQ64: fix = "no"

Group MA3 ...(requires permutation against ML)............. R=1
RESUMEDELAY:fix = "10"

Group MA4 ...(requires permutation against ML)............. R=1
APERR: fix = "no"
AWRPAR: fix = "no"
DACWP: fix = "no"
DACPERR: fix = "no"
AWP64: fix = "no"
DACWP64: fix = "no"

Group MD0 ... R=7
WAITS: permutated, 4 values = "0,1,3,8"
WAITMODE: fix = "no"

Group MD1 ... R=1
DPERR: fix = "no"
DSERR: fix = "no"

Group MD2 ... R=1
DWRPAR: fix = "no"
DWP64: fix = "no"

Group ML .. R=47
BURSTLEN: permutated, 3 values = "4,8,32"

Permutation Results
Actual Page Size (BPPR_MA_PAGESIZEACT) ... 47
Last permutation number (BPPR_MA_LASTPERM) 1645
Estimated testtime (BPPR_MA_TIME) 498.48 us
testtime for 3-tuples......... (BPPR_MA_TUPLES_TIME) ... 498.48 us
234 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Report Listing Using the PPR
Coverage: (n/a means not covered)
(MA1) - requires ML R= 235
(MD0) ... R= 7
(ML) .. R= 47
(MA1, MD0) - requires ML R= 1645
(MA1, ML) ... R= 235
(MD0, ML) ... R= 329
(MA1, MD0, ML) .. R= 1645

Max. covered single group 235
Max. of covered pairs 1645
Max. of covered 3-tuples 1645

Testtime total (MATTR).. 498.48 us
Testtime (all 3-tuples, MATTR)............................... 498.48 us

Max. Data Transfer for all permutations (MATTR):........... 6.4258 Kbyte
Max. Data Transfer for all 3-tuples (MATTR):.............. 6.4258 Kbyte
Number of Block Page Runs needed for all permutations...... 26
Number of Block Page Runs needed for all 3-tuples......... 26

HINT: This master attribute page should be called with
a block size of at least 44 DWords to avoid shortened bursts.
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 235

Using the PPR Report Listing
BLOCK VS. MASTER ATTRIBUTE PERMUTATION
======================================

WARNING: Burstlengths cannot be guaranteed, because
largest blocksize (4 DWords) is smaller than the
sum of all burstlengths (44).

WARNING: MWI bursts must have sizes of multiple cachelines.
Therefore make sure you use infinite burstlength
when generating attribute pages by PPR,
or set up your own attribute page so that a
LAST bit will not interrupt transfer within a cacheline!

Testtime T(ALL) = T(BLOCK) * No. of Attribute permutations.. 31.903 ms
Testtime T(Tuples) = T(Block) * 1645 31.903 ms

REPORT
======

Properties
Print general properties (BPPR_REP_GEN) yes
Print block properties (BPPR_REP_BLK) yes
Print master attribute properties (BPPR_REP_MA) yes
Print target attribute properties (BPPR_REP_TA) no
Print report properties (BPPR_REP_REPORT) yes
Print block page lines........... (BPPR_REP_BLOCKCONTENT) . 30
Print master attr. page lines ... (BPPR_REP_MACONTENT) 30
Print target attr. page lines ... (BPPR_REP_TACONTENT) 0
Max. order of tuple listed (BPPR_REP_ORDER_TUPLES) . 3
Print C-language symbols (BPPR_REP_CAPI) yes
236 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Report Listing Using the PPR
Block Permutation Table
=======================

PermNum | Size Alignment Byten Command

1 | 4 %16= 0 0000\b 7
2 | 8 %16= 4 0000\b 15 (illegal-> 7)
3 | 16 %16= 8 0000\b 7
4 | 4 %16=12 0000\b 15 (illegal-> 7)
5 | 8 %32= 0 0000\b 7
6 | 16 %16= 0 0000\b 15
7 | 4 %16= 4 0000\b 7
8 | 8 %16= 8 0000\b 15 (illegal-> 7)
9 | 16 %16=12 0000\b 7
10 | 4 %32= 0 0000\b 15 (illegal-> 7)
11 | 8 %16= 0 0000\b 7
12 | 16 %16= 4 0000\b 15 (illegal-> 7)
13 | 4 %16= 8 0000\b 7
14 | 8 %16=12 0000\b 15 (illegal-> 7)
15 | 16 %32= 0 0000\b 7

Skip, same as 1 | 4 %16= 0 0000\b 15 (illegal-> 7)
Skip, same as 2 | 8 %16= 4 0000\b 7
Skip, same as 3 | 16 %16= 8 0000\b 15 (illegal-> 7)
Skip, same as 4 | 4 %16=12 0000\b 7
Skip, same as 5 | 8 %32= 0 0000\b 15 (illegal-> 7)

21 | 16 %16= 0 0000\b 7
Skip, same as 7 | 4 %16= 4 0000\b 15 (illegal-> 7)
Skip, same as 8 | 8 %16= 8 0000\b 7
Skip, same as 9 | 16 %16=12 0000\b 15 (illegal-> 7)
Skip, same as 10 | 4 %32= 0 0000\b 7
Skip, same as 11 | 8 %16= 0 0000\b 15 (illegal-> 7)
Skip, same as 12 | 16 %16= 4 0000\b 7
Skip, same as 13 | 4 %16= 8 0000\b 15 (illegal-> 7)
Skip, same as 14 | 8 %16=12 0000\b 7

30 | 16 %32= 0 0000\b 15
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 237

Using the PPR Report Listing
Block Fitting List
==================

Actual Needed Size of Page: 26
First Permutation: 1

PermNum | Start Addr End Addr Size Alignment Byten Command
--

5 | 0x000b8000 0x000b8007 8 %32= 0 0000\b 7
13 | 0x000b8008 0x000b800b 4 %16= 8 0000\b 7

fill | 0x000b800c 0x000b800f 4
1 | 0x000b8010 0x000b8013 4 %16= 0 0000\b 7
7 | 0x000b8014 0x000b8017 4 %16= 4 0000\b 7
3 | 0x000b8018 0x000b8027 16 %16= 8 0000\b 7

fill | 0x000b8028 0x000b802b 4
9 | 0x000b802c 0x000b803b 16 %16=12 0000\b 7

fill | 0x000b803c 0x000b803f 4
15 | 0x000b8040 0x000b804f 16 %32= 0 0000\b 7
11 | 0x000b8050 0x000b8057 8 %16= 0 0000\b 7

fill | 0x000b8058 0x000b805f 8
30 | 0x000b8060 0x000b806f 16 %32= 0 0000\b 15

fill | 0x000b8070 0x000b808f 32
21 | 0x000b8090 0x000b809f 16 %16= 0 0000\b 7

fill | 0x000b80a0 0x000b80ab 12
14 | 0x000b80ac 0x000b80b3 8 %16=12 0000\b 7
12 | 0x000b80b4 0x000b80c3 16 %16= 4 0000\b 7

fill | 0x000b80c4 0x000b80cf 12
6 | 0x000b80d0 0x000b80df 16 %16= 0 0000\b 15

10 | 0x000b80e0 0x000b80e3 4 %32= 0 0000\b 7
fill | 0x000b80e4 0x000b80e7 4

8 | 0x000b80e8 0x000b80ef 8 %16= 8 0000\b 7
fill | 0x000b80f0 0x000b80f3 4

2 | 0x000b80f4 0x000b80fb 8 %16= 4 0000\b 7
4 | 0x000b80fc 0x000b80ff 4 %16=12 0000\b 7

Last fit permutation: 30 Fit completely!
238 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Report Listing Using the PPR
Block Page Contents
===================

Size of Page: 26

BusAddr Command Byten NOfDWords IntAddr
--
0x000b8010 7 0000\b 1 0x00010
0x000b80f4 7 0000\b 2 0x000f4
0x000b8018 7 0000\b 4 0x00018
0x000b80fc 7 0000\b 1 0x000fc
0x000b8000 7 0000\b 2 0x00000
0x000b80d0 15 0000\b 4 0x000d0
0x000b8014 7 0000\b 1 0x00014
0x000b80e8 7 0000\b 2 0x000e8
0x000b802c 7 0000\b 4 0x0002c
0x000b80e0 7 0000\b 1 0x000e0
0x000b8050 7 0000\b 2 0x00050
0x000b80b4 7 0000\b 4 0x000b4
0x000b8008 7 0000\b 1 0x00008
0x000b80ac 7 0000\b 2 0x000ac
0x000b8040 7 0000\b 4 0x00040
0x000b8090 7 0000\b 4 0x00090
0x000b8060 15 0000\b 4 0x00060
0x000b800c 7 0000\b 1 0x0000c
0x000b8028 7 0000\b 1 0x00028
0x000b803c 7 0000\b 1 0x0003c
0x000b8058 7 0000\b 2 0x00058
0x000b8070 7 0000\b 8 0x00070
0x000b80a0 7 0000\b 3 0x000a0
0x000b80c4 7 0000\b 3 0x000c4
0x000b80e4 7 0000\b 1 0x000e4
0x000b80f0 7 0000\b 1 0x000f0
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 239

Using the PPR Report Listing
Master Attribute Permutations
=============================

Actual Size of Page: 47
First Permutation: 1

| B

P | U T
e | R R
r | W S S Y
m | A T T B
N | I L E A
u | T E P C
m | S N S K

1 | 0 0 0 1
2 | 1 0 7 0
3 | 3 0 7 1
4 | 8 1 0 0
5 | 0 0 7 1
6 | 0 0 0 1
7 | 1 0 7 0
8 | 0 0 7 1
9 | 1 0 0 0
10 | 3 0 7 1
11 | 8 0 0 1
12 | 0 1 7 0
13 | 0 0 7 1
14 | 1 0 0 0
15 | 0 0 7 1
16 | 1 0 0 1
17 | 3 0 7 0
18 | 8 0 7 1
19 | 0 0 0 0
20 | 0 0 7 1
21 | 1 0 0 1
22 | 0 0 7 0
23 | 1 0 7 1
24 | 3 0 0 0
25 | 8 0 7 1
26 | 0 0 0 1
27 | 0 0 7 0
28 | 1 0 7 1
29 | 0 0 0 0
30 | 1 0 7 1

Printout ends due to user setting (BPPR_REP_MACONTENT = 30).

End of report.
240 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Index
Index

A

Access to Exerciser Memories 77
Accumulated Error Register 47
Administration 33

Examples 36
Functions Overview 35
Programming Options 35

Algorithms
Permutation 193

Alignment 192
Analyzer Components 46
Attribute Page 191

Example 223

B

Base
Address Registers 113
Decoder 115

Basically 89
Behavior

Decoder Property 112
Benefits

PPR Software 18
BEST 193
Best Algorithm 193
BIST 136
Block

(Page) Run 103
Move 147

Block Page 189
Block Page Contents

Report Section 228
Block Permutation

Testing Considerations 215
Block Permutation Properties

Internal Address 191
Block Permutations

Report Section 214
Block Size 192
Block Transfers

Running 86
Board

Reset 38
Built-In Test

Examples 149
Functions Overview 148
Programming Steps 148
Read 147

Bus
Commands 115
Number 115

Bus Address 190
Bus Commands 192
Bus Errors

Reproducing 231
Byte Enable Memory

Functions Overview 102
Byte Enable Variation 230
Byte Enables 192

C

C Programming Libraries 13
Cacheline Size 82, 136
Calculations of Coverage 193
Capability

Fast Back-to-Back 107
Capability Checking 34
C-API

Example 22
Generic Functionality 14

Card Status Register
Access 42
Example 43
Functions Overview 42

Card Status Register Access
Programming Steps 42

CBS (= Compound Block Size) 190
Class Code 136
Command 115

Register (in Config Space) 136
Compare

Flag 191
Offset 191

Compound Block 189
Compound Block Size (CBS) 190
Concatenated Pages

Master Attribute Memory 90
Master Block Transfer Memory 86
Target Attribute Memory 125

Config Behavior (Decoder) 119
Configuration Decoder

Type 1 109
Configuration Register

Latency Timer 136
Configuration Space Header

Programming 136
Connection 28

Examples 30
Programming Steps 29

Constraints 185
Contributions

of the PPR Software 17
Counter

Performance 64
Coverage 180

Calculations 193
Master Attributes 200
Master Block Permutations 192
Target Attributes 206
Uncovered Permutations 231

CPU Port
Example 159
Functions Overview 157
Mapping 157
Pin Configuration 153
Programming 152
Signals 153
Timing Diagrams 155

Custom Behavior (Decoder) 119

D

Data
Invert 82

Decoder
Parameter 110
Priorities 110

Decoder Behavior(s) 118
Decoding

Properties 112
Decoding Properties

Mask 113
Size 113

Delay Counter 82
Design

Master Block Transfer Memory 85
Device ID 136
Differential (=Transitional) Pattern
Term 53
Directory Structure 13
Documentation Overview 9
Dual Address Cycle (DAC) 115
Dual Address Cycles 190

E

Error Checking
Handle-Based 20
Non-Handle-Based 21

Error Register
Contents 47
Design 47
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 241

Index
Example
Card Status Register 43
Fast Host Interface 31
Pattern Terms 54
PCI Bus with Two Testcards 32
PCI Port 32
Serial Port 30

Examples 30
Administration 36
Built-In Test 149
Connection 30
CPU Port 159
Factory Defaults for Power-Up 40
Generating PPR Reports 210
Generic Master Properties 84
Generic Target Properties 108
Initialization 30
LED Controlling and Display
Functions 169
Mailbox 174
Master Block Permutations 196
Master Block Transfer Memory 88
Master Run 104
Performance Measurement 67
Power-Up Control 40
PPR Administration 188
Protocol Observer 48
Reset Control 40
Running the PPR Test 212
Sequencer 60
Target Attribute Groups 132
Target Attribute Memory

Target Attribute Memory
Example 128

Target Attribute Permutations 208
Target Decoder Properties Memory 121
Timing Check 51
Trace Memory 73
Trigger I/O Sequencer 165
User Defaults for Power-Up 41
Using the C-API 22
Using the PPR 23

Exerciser
Block Diagram 78

Exerciser as a Master Device
Programming 80

Exerciser as a Target Device
Programming 105

Exerciser Components 78
Exerciser Memories

Access 77
Master 81

Exhaustive Test 230
Expansion ROM

Decoder 107

F

Factory Defaults for Power-Up
Example 40

Fast
Back-to-Back 82

Fast Back-to-Back Capability 107
Fast Host Interface

Example 31
Port 28

Fast Speed 116
Feedback Counter

Enable Condition 56
Preload Condition 57
Trigger Sequencer 58

Fill Gaps 191
First Error Register 47
First Permutation Number 191
Fitting List

Master Block 218
Fixed Byte Enables 102
Full Configuration Decoder 109
Functionality

C-API 14
PPR 15

Functions Overview
Administration 35
Built-In Test 148
Byte Enable Memory 102
Card Status Register 42
Connection 29
CPU Port 157
Generating PPR Reports 210
Generic Master Properties 83
Generic Target Properties 108
Initialization 29
LED Controlling and Display 169
Mailbox 173
Master Block Permutations 195
Master Block Transfer Memory 87
Master Run 104
Pattern Terms 53
Performance Measurement 65
Power-Up Control 39
Protocol Observer 48
Reset Control 39
Static I/O Port 162
Target Attribute Memory 127
Target Attribute Permutations 207
Target Decoder Properties Memory 120
Timing Check 50
Trace Memory 72
Trigger I/O Sequencer 164

G

Gaps 191
General PPR Properties

Report Secion 214
Generating PPR Reports

Example 210
Functions Overview 210

Generic Master Properties 82

Example 84
Functions Overview 83
Latency Timer 82

Generic Properties
Master 82

Generic Target Properties
Example 108
Functions Overview 108
Programming 107

Group Assignment
Target Attributes 129

H

Handle Initialization 21
Handle-Based Error Checking 20

Simplified Version 20
Header Type 136

I

I/O Decoder 107
IDSEL (Initialization Device Select) 115
Info Properties 117
Initialization 28

Examples 30
Programming Steps 29

Internal Address
Block Permutation Properties 191
Resource Properties 118

Interrupt Line 137
Invert Data 82

L

Latency Timer
Configuration Register 136
Generic Master Property 82

LED Controlling and Display
Example 169
Functions Overview 169

Libraries
for C Programming 13

Listing
Report 232

Location 117
Loops in the Master Attribute Memory 90
Loops in the Target Attribute Memory 124

M

Mailbox
Example 174
Functions Overview 173
Programming 171

Mailbox Access via Control PC 174
Mailbox Access via PCI Bus 173
Mailbox Status Register 172
242 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Index
Mapping
CPU Port 157
Static I/O Port 161

Mask
Decoding Property 113
of Rules 47

Master
Enable Bit 82

Master Attribute
Permutation Table 223
Pointer Mode 82

Master Attribute Groups (PPR) 199
Master Attribute Memory

Design 89
Loops 90
Programming 89

Concatenated Pages 90
Master Attribute Page Size (MAPS) 199
Master Attribute Permutation

Coverage (Example) 224
Master Attribute Permutations

Programming 199
Master Attributes

Page Size 199
Programming 92

Master Block
Fitting List 218
Page Size 191
Permutation Properties 190
Permutation Table (Example) 216
Variation Parameters 191

Master Block Page
Run 103

Master Block Permutations
Example 196
Functions Overview 195
Programming 189
Programming Steps 195

Master Block Transfer Memory
Concatenated Pages 86
Contents 85
Design 85
Example 88
Functions Overview 87
Programmed Pages 86
Programming 85
Programming Steps 87

Master Block vs. Master Attribute
Permutation

Report Sections 226
Master Memories 81
Master Run

Example 104
Functions Overview 104
Programming Steps 104

MBPS (= Master Block Page Size) 191
Medium and Slow Speed 116
Memories

Master 81
Memories Programming

Master Attributes 89
Master Block Transfer 85
Target Attribute 123

Memory Contents
Master Block Transfer 85
Target Attributes 123
Target Decoder Properties Memory 109

Memory Decoder 107
Memory Design

Master Attribute 89
Target Attributes 124

MWI
Command 217
Command Restrictions 215
Mode 82

N

Next State 56
No DEVSEL# 116
Non-Handle-Based Error Checking 21
Normal Behavior (Decoder) 118

O

Open Drain 161
Operation Principles

PPR Software 17
Optimizing Testing Time 229
Overlay Behavior (Decoder) 118
Overview

Documentation 9

P

Page Size
Master Attributes 199
Target Attributes 205

Parameters 178
Parameters (Decoder) 110
Pattern Term

Transitional 53
Pattern Terms

Example 54
Functions Overview 53
Performance Measurement 66
Programming 52
Programming Options 53
Trigger I/O Sequencer 165
Trigger Sequencer 59
Types 53
Using 52

PCI
reset 37

PCI Bus
Example 32

PCI Port
Example 32

Performance Measurement 65
Example 67
Functions Overview 65
Programming 64
Programming Steps 65

Performance Sequencer Memory
Programming Model 65

Performing Data Transfer
Programming Steps 80

PERM 193
Permutating Algorithm 193
Permutation Results

Master Attributes Report Section 224
Permutation Table 179

Master Attributes 223
Permutations 178
Pin Configuration

CPU Port 153
Platform-Dependence 14
Port

Fast Host Interface 28
Power Management Event (PME)

Programming 175
Power-Up and Reset Control 37
Power-Up Control

Examples 40
Functions Overview 39
Programming Options 39

PPR
Functionality 15
Test Program (Example) 182

PPR Administration
Example 188

PPR Reports
Generation 209

PPR Software
Benefits 18
Contributions 17
Example 23
Operation Principles 17

PPR Test Run 211
Programming Steps 211

Prefetchable 117
Preparation Register

Programming 77
Presetting Values 229
Priorities (Decoder) 110
Program Footer 182
Program Header 182
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 243

Index
Programming
Configuration Space Header 136
Exerciser as a Master Device 80
Exerciser as a Target Device 105
Generic Master Properties 82
Generic Target Properties 107
Mailbox 171
Master Attribute Memory 89
Master Attribute Permutations 199
Master Attributes 92
Master Block Permutations 189
Master Block Transfer Memory 85
Pattern Terms 52
Performance Measurement 64
Power Management Event (PME) 175
Protocol Observer 47
Sequencer 55
Static I/O Port 160
Target Attribute Memoy 123
Target Decoder Properties Memory 109
Timing Checker 49
Trace Memory 70
Trigger I/O Sequencer 163

Programming Interfaces 12
Programming Model

Performance Sequencer 65
Sequencer 58

Programming Options
Administration 35
Pattern Terms 53
Power-Up Control 39
Reset Control 39

Programming Steps 65
Built-In Test 148
Card Status Register Access 42
Connection 29
Initialization 29
Mailbox Access via Control PC 174
Mailbox Access via PCI Bus 173
Master Block Permutations 195
Master Block Transfer Memory 87
Master Run 104
Performing Data Transfer 80
PPR Administration 187
PPR Report Generation 210
PPR Test Run 211
PPR Test Setup 187
Protocol Observer 48
Sequencer 58
Target Attribute Memory 127
Target Attribute Permutations 207
Target Attributes Memory 132
Target Decoder Properties 120
Timing Check 50
Trace Memory 72
Writing a C Program 182

Protected Fast Speed 116
Protocol

Error Detect 147

Protocol Observer
Example 48
Functions Overview 48
Programming 47
Programming Steps 48

Protocol Permutation and Randomizer
Functionality 15

R

RAND 193
Randomizing Algorithm 193
Read (Built-In Test) 147
RECOMM 193
Recommending Algorithm 193
Repeat

Mode 82
Repetition Length 180
Report

Analyzing 213
Printing 210

Report Generation (PPR)
Programming Steps 210

Report Properties
Report Section 227

Report Sections
Block Page Contents 228
Block Permutation Results 215
Block Permutations 214
General PPR Properties 214
Header 213
Master Attribute Permutation 221
Master Block Permutation 214
Master Block vs. Master Attribute
Permutation 226
Report Properties 227

Reproducing Bus Errors 231
Requesting Results 230
Reset Control

Examples 40
Functions Overview 39
Programming Options 39

Resource 117
Properties 117

Resource Constraints (Example) 185
Resource Locking 34
Resource Properties

Internal Address 118
Size 118

Restoring Settings after Resets 38
Results

Requesting 230
Revision ID 136
Rule Mask 47
Run

Master 103
Run Mode

Master 82

Target 107
Running the PPR Test

Example 212

S

Sequencer
Example 60
Programming 55
Programming Steps 58
Set Up 56

Sequencer Memory
Programming Model 58

Serial Port
Example 30

Session Handle 188
Signals of the CPU Port 153
Size

Decoding Property 113
Resource Properties 118

Speed 116
Fast 116
Medium and Slow 116
No DEVSEL# 116
Protected Fast 116

Start Address Alignment 192
State 56
Statemachine Reset 38
Static I/O

Output Mode 161
Static I/O Port

Functions Overview 162
Mapping 161
Programming 160

Status
Register in Config Space 136

Status Register
Mailbox 172

Storage Qualifier 71
Condition 57

Subtractive Decoder 109
System

Checking (Info) 34

T

Target
Run 135
Run Mode 107

Target Attribute Groups
Example 132

Target Attribute Groups (PPR) 205
Target Attribute Memory

Concatenated Pages 125
Contents 123
Design 124
Functions Overview 127
Loops 124
Programming 123
244 Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002

Index
Programming Steps 127
Target Attribute Page Size (TAPS) 205
Target Attribute Permutation

Programming Steps 207
Target Attribute Permutations 205

Example 208
Functions Overview 207

Target Attributes
Group Assignment 129
Testing Time 206

Target Attributes Memory
Programming Steps 132

Target Decoder Properties
Programming Steps 120
Properties

Target Decoder 111
Target Decoder Properties Memory 120

Contents 109
Example 121
Programming 109

Target Operation 105
Target Programming

Attribute
Groups 129

TATTR 206
Terminal Count

Performance Sequencer 66
Trigger I/O Sequencer 165
Trigger Sequencer 59

Test Area
TATTR 206

Test Design 183

Test Program
PPR 182

Testing Time
Master Attribute Permutation 200
Master Block Permutation 194
Optimizing 229
Target Attributes 206

Timing Check
Example 51
Functions Overview 50
Programming 49
Programming Steps 50

Timing Diagrams
CPU Port 155

Totem Pole 161
Trace Memory

Example 73
Filling 71
Functions Overview 72
Programming 70
Programming Steps 72
Trigger Sequencer Programming 55

Traffic Make 147
Transfer Direction 190
Transition Condition 56
Transitional Pattern Term 53
Trigger 82

Condition 57
Counter 71

Trigger I/O Sequencer
Example 165
Functions Overview 164
Programming 163

Trigger Sequencer
Feedback Counter 58
Pattern Terms 59
Terminal Count 59

Tuple 178
Type 1 Configuration Decoder 109
Types of Pattern Terms 53

U

Uncovered Permutations 231
Unoccupied Prime Number 180
User Defaults for Power-Up

Example 41

V

Value List 178
Values 178
Variable Byte Enables 102
Variation Constraints

Master Attribute Permutation
Report 221

Variation Parameters 199
Target Attributes 205

Vendor ID 136
Version Checking 33

W

Write-Read Compare 147
Writing a C Program

Programming Steps 182
Agilent E2925B Opt. 320 C-API/PPR Reference, August 2002 245

Publication Number: 5988-4894EN

	About This Guide
	Documentation Overview
	Programming Overview
	Programming Interfaces
	C Programming Libraries
	Generic C-API Functionality
	Protocol Permutation and Randomizer Functionality
	Contributions of the PCI PPR Software
	Benefits

	Error Checking
	Example: Using the C-API
	Example: Using the PPR

	Programming the Framework
	Connection and Initialization
	Functions Overview
	Examples

	Administration
	Functions Overview
	Examples

	Power-Up and Reset Control
	Functions Overview
	Examples

	Card Status Register Access
	Functions Overview
	Example

	Programming the Analyzer
	Protocol Observer Programming
	Functions Overview
	Example

	Timing Check Programming
	Functions Overview
	Example

	Programming the Pattern Terms
	Functions Overview
	Example

	Sequencer Programming
	Functions Overview
	Example

	Performance Measurement Programming
	Functions Overview
	Example

	Trace Memory Programming
	Functions Overview
	Example

	Programming the Exerciser
	Reading from and Writing to the Memories
	Exerciser Block Diagram
	Programming the Exerciser as a Master Device
	Programming Generic Master Properties
	Master Block Transfer Memory Programming
	Master Attribute Memory Programming
	Master Attribute Group Programming
	Byte Enable Memory Programming
	Master Run

	Programming the Exerciser as a Target Device
	Target Operation
	Programming Generic Target Properties
	Programming the Target Decoder Properties Memory
	Target Attribute Memory Programming
	Target Attribute Groups Programming
	Target Run
	Configuration Space Header Programming
	Expansion ROM Programming

	Data Memory and Compare Unit Programming
	Functions Overview
	Example

	Host Access Programming
	Functions Overview
	Example

	Interrupt Programming
	Example

	Built-In Test Programming
	Functions Overview
	Example

	Programming the Interfaces
	CPU Port Programming
	Functions Overview
	Example

	Static I/O Port Programming
	Functions Overview
	Example

	Trigger I/O Sequencer Programming
	Functions Overview
	Example

	LED Controlling and Display Functions Overview
	Example

	Mailbox Programming
	Functions Overview
	Example

	Power Management Event Programming

	Using the PPR
	Generating Permutations
	How to Write a Test Program
	Example Test Design
	PPR Administration
	Functions Overview
	Example

	Programming Master Block Permutations
	Functions Overview
	Example

	Programming Master Attribute Permutations
	Functions Overview
	Example

	Programming Target Attribute Permutations
	Functions Overview
	Example

	Generating PPR Reports
	Functions Overview
	Example

	Running the PPR Test
	Example

	Analyzing the Report
	Report Header
	Report of Block Permutations
	Report of Master Attribute Permutation
	Report of Master Block vs. Master Attribute Permutation
	Report of Report Properties
	Block Page Contents

	Further Options and Possibilities
	Report Listing

